cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Xianwen Wang

Xianwen Wang's wiki page.

Xianwen Wang has authored 5 sequences.

A386855 Positive nonsquare integers of the form (r^2+s^2) / (1+r*s) for rational numbers r and s.

Original entry on oeis.org

10, 20, 34, 52, 65, 73, 74, 130, 148, 160, 164, 202, 226, 241, 244, 265, 281, 290, 340, 394, 416, 436, 450, 452, 505, 514, 569, 577, 580, 586, 601, 641, 650, 720, 724, 745, 801, 802, 820, 848, 865, 884, 898, 916, 929, 970, 976, 1044, 1060, 1073, 1098, 1105, 1152, 1154, 1226, 1252, 1280, 1305, 1321, 1345
Offset: 1

Author

Xianwen Wang, Aug 05 2025

Keywords

Comments

We exclude perfect square cases, since Problem 6 of the 1988 International Mathematical Olympiad (IMO) proves that the expression (r^2+s^2) / (1+r*s) for integral numbers r and s yields a positive integer iff it is a perfect square.
Take a(10)=160 for example, the parametric solution is [r,s]=[(-4*U^2-296*U+23684)/(27*U^2-4320*U+27), (-788*U^2+8*U+148)/(27*U^2-4320*U+27)]

Crossrefs

Subsequence of A000404 and A000037.

Programs

  • Mathematica
    pool=Association[];mSize=100;Block[{bc,y},Monitor[Do[bc=Table[Times@@(Select[FactorInteger[d],Mod[#[[2]],2]==1&][[All,1]]),{d,{y^2-4,y}}];If[AllTrue[bc,#>1&],If[AllTrue[{Length@Solve[x^2==bc[[1]],x,Modulus->bc[[2]]],Length@Solve[x^2==bc[[2]],x,Modulus->bc[[1]]]},#>0&],pool[y]=Lookup[pool,y,0]+1];If[Length[pool]==mSize,Break[]]],{y,1,10^10}],{y}]];Keys[pool]

A379340 Integers m such that m^2 is the sum of two or more squares of consecutive integers in more than one way.

Original entry on oeis.org

70, 105, 143, 195, 2849, 3854, 5681, 8075, 143737, 144157, 208395, 939356, 1226670, 2259257, 2656724, 2741046, 4598528, 6555549, 7832413, 11818136, 19751043, 32938290, 429323037, 807759678, 1375704770, 1656510196, 1981351834
Offset: 1

Author

Xianwen Wang, May 23 2025

Keywords

Examples

			105^2 = (-19)^2 + (-18)^2 + ... + 29^2 = (-21)^2 + (-20)^2 + ... + 28^2.
143^2 = 38^2 + 39^2 + ... + 48^2 = 7^2 + 8^2 + ... + 39^2.
2259257^2 = 26181^2 + 26182^2 + ... + 32158^2 = 9401^2 + 9402^2 + ... + 25273^2.
		

Crossrefs

Cf. A062681.
Subsequence of A174069.

A384440 Array of triples (x,y,z) of minimal (positive) solutions of the cubic Pell equation x^3 + n*y^3 + n^2*z^3 - 3*n*x*y*z = 1, read by rows.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 4, 3, 2, 5, 3, 2, 41, 24, 14, 109, 60, 33, 4, 2, 1, 1, 0, 0, 4, 2, 1, 181, 84, 39, 89, 40, 18, 9073, 3963, 1731, 94, 40, 17, 29, 12, 5, 5401, 2190, 888, 16001, 6350, 2520, 324, 126, 49, 55, 21, 8, 64, 24, 9, 361, 133, 49
Offset: 1

Author

Xianwen Wang, May 29 2025

Keywords

Comments

Given n, n!=k^3, there are infinitely many solutions, and all other solutions can be derived from the minimal solution pair by a recurrence relation. See Wolfe, pages 359-369.

Examples

			For n=5, the minimal positive solution is (41, 24, 14), so a(13)=41, a(14)=24, a(15)=14.
The array begins:
    1,  0,  0,
    1,  1,  1,
    4,  3,  2,
    5,  3,  2,
   41, 24, 14,
  109, 60, 33,
  ...
		

References

  • Clyde Lynne Earle Wolfe, On the Indeterminate Cubic Equation X^3 + Dy^3 + D^2z^3 - 3Dxyz, University of California Press, 1923, pp. 359-369.

Extensions

Name edited by Michel Marcus, Jun 03 2025

A383654 a(n) is the number k such that A383653(n)^4 is the sum of squares of k consecutive integers.

Original entry on oeis.org

2, 2, 169, 242, 177, 352, 1536, 2401, 40898, 163607, 230121, 60625, 218089, 185761, 19512097, 47761921, 1170329056, 1224370081, 7957888849, 10842382346, 11474926944, 208152552417, 12230369281, 190412616875, 497818686976, 72899460001, 1384334025217, 313455536641
Offset: 1

Author

Xianwen Wang, May 04 2025

Keywords

Examples

			Case a(1)=2: 13^4 = 119^2 + 120^2, 1^4 = 0^2 + 1^2.
Case a(3)=169: 26^4 = (-67+1)^2 + (-67+2)^2 + ... + (-67+168)^2 + (-67+169)^2.
Case a(5)=177: 295^4 = (6452+1)^2 + (6452+2)^2 + ... + (6452+176)^2 + (6452+177)^2.
...
Case a(10)=163607: 5546^4 = (-22206+1)^2 + (-22206+2)^2 + ... + (-22206+163606)^2 + (-22206+163607)^2.
		

Programs

  • Mathematica
    lst={};Monitor[Do[mm=6 m^4;div=TakeWhile[Divisors[mm][[2;;-2]],2mm/#+1>#^2&];
    ans=Select[div,IntegerQ[Sqrt[(2mm/#+1-#^2)/3]]&&Mod[#-Sqrt[(2mm/#+1-#^2)/3],2]==1&];
    If[Length[ans]>0,tmp={m,{#,q=Sqrt[(2mm/#+1-#^2)/3],p=(q+1-#)/2}&/@ans};Print[tmp];
    AppendTo[lst,tmp]],{m,1,10^4}],m];lst

A383653 Integers m such that m^4 is the sum of squares of two or more consecutive integers, positive or negative.

Original entry on oeis.org

1, 13, 26, 33, 295, 330, 364, 1085, 5005, 5546, 5682, 6305, 6538, 15516, 415151, 1990368, 3538366, 34011252, 42016497, 79565281, 139107722, 175761059, 254801664, 418093065, 667378972, 1214995500, 3609736702, 4353556896
Offset: 1

Author

Xianwen Wang, May 04 2025

Keywords

Comments

a(29) > 10^10.
From David A. Corneth, May 04 2025: (Start)
The sum of the first m positive squares is f(m) = m*(m + 1)*(2*m + 1) / 6.
The sum of consecutive squares m^2 + (m+1)^2 + ... + t^2 where 0 < m <= t may be written as f(t) - f(m-1) for some t and m.
From there we can factor out t - m - 1 and solve the system of equations going over divisors of 6*m^4.
To get divisors of 6*m^4 we need to factor 6*m^4 which can be done using the factors of 6 and the factors of m. Doing so makes we need to factorize smaller numbers. (End)

Examples

			5546 is a term because 5546^4 = (-22205)^2 + (-22204)^2 + ... + 141400^2 + 141401^2.
		

Programs

  • Mathematica
    lst={};Monitor[Do[mm=6 m^4;div=TakeWhile[Divisors[mm][[2;;-2]],2mm/#+1>#^2&];
    ans=Select[div,IntegerQ[Sqrt[(2mm/#+1-#^2)/3]]&&Mod[#-Sqrt[(2mm/#+1-#^2)/3],2]==1&];
    If[Length[ans]>0,tmp={m,{#,q=Sqrt[(2mm/#+1-#^2)/3],p=(q+1-#)/2}&/@ans};Print[tmp];
    AppendTo[lst,tmp]],{m,1,10^4}],m];lst