A383367
a(n) is the least integer k such that A383359(n)^4 can be expressed as a sum of squares of k consecutive integers.
Original entry on oeis.org
2, 177, 352, 1536, 2401, 40898, 60625, 185761, 19512097, 47761921, 1224370081, 7957888849, 10842382346, 11474926944, 12230369281, 190412616875, 497818686976, 72899460001, 1384334025217, 313455536641
Offset: 1
a(2) = 177 because A383359(2)^4 = 295^4 can be expressed as sum of squares of 177 consecutive integers: 295^4 = 6453^2 + 6454^2 + ... + 6628^2 + 6629^2.
A383653
Integers m such that m^4 is the sum of squares of two or more consecutive integers, positive or negative.
Original entry on oeis.org
1, 13, 26, 33, 295, 330, 364, 1085, 5005, 5546, 5682, 6305, 6538, 15516, 415151, 1990368, 3538366, 34011252, 42016497, 79565281, 139107722, 175761059, 254801664, 418093065, 667378972, 1214995500, 3609736702, 4353556896
Offset: 1
5546 is a term because 5546^4 = (-22205)^2 + (-22204)^2 + ... + 141400^2 + 141401^2.
-
lst={};Monitor[Do[mm=6 m^4;div=TakeWhile[Divisors[mm][[2;;-2]],2mm/#+1>#^2&];
ans=Select[div,IntegerQ[Sqrt[(2mm/#+1-#^2)/3]]&&Mod[#-Sqrt[(2mm/#+1-#^2)/3],2]==1&];
If[Length[ans]>0,tmp={m,{#,q=Sqrt[(2mm/#+1-#^2)/3],p=(q+1-#)/2}&/@ans};Print[tmp];
AppendTo[lst,tmp]],{m,1,10^4}],m];lst
Showing 1-2 of 2 results.
Comments