A383654 a(n) is the number k such that A383653(n)^4 is the sum of squares of k consecutive integers.
2, 2, 169, 242, 177, 352, 1536, 2401, 40898, 163607, 230121, 60625, 218089, 185761, 19512097, 47761921, 1170329056, 1224370081, 7957888849, 10842382346, 11474926944, 208152552417, 12230369281, 190412616875, 497818686976, 72899460001, 1384334025217, 313455536641
Offset: 1
Examples
Case a(1)=2: 13^4 = 119^2 + 120^2, 1^4 = 0^2 + 1^2. Case a(3)=169: 26^4 = (-67+1)^2 + (-67+2)^2 + ... + (-67+168)^2 + (-67+169)^2. Case a(5)=177: 295^4 = (6452+1)^2 + (6452+2)^2 + ... + (6452+176)^2 + (6452+177)^2. ... Case a(10)=163607: 5546^4 = (-22206+1)^2 + (-22206+2)^2 + ... + (-22206+163606)^2 + (-22206+163607)^2.
Links
- Zhining Yang, Can be expressed as the fourth power of the sum of squares of consecutive positive integers, Chinese BBS.
Programs
-
Mathematica
lst={};Monitor[Do[mm=6 m^4;div=TakeWhile[Divisors[mm][[2;;-2]],2mm/#+1>#^2&]; ans=Select[div,IntegerQ[Sqrt[(2mm/#+1-#^2)/3]]&&Mod[#-Sqrt[(2mm/#+1-#^2)/3],2]==1&]; If[Length[ans]>0,tmp={m,{#,q=Sqrt[(2mm/#+1-#^2)/3],p=(q+1-#)/2}&/@ans};Print[tmp]; AppendTo[lst,tmp]],{m,1,10^4}],m];lst
Comments