A000043 Mersenne exponents: primes p such that 2^p - 1 is prime. Then 2^p - 1 is called a Mersenne prime.
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281
Offset: 1
Examples
Corresponding to the initial terms 2, 3, 5, 7, 13, 17, 19, 31 ... we get the Mersenne primes 2^2 - 1 = 3, 2^3 - 1 = 7, 2^5 - 1 = 31, 127, 8191, 131071, 524287, 2147483647, ... (see A000668).
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
- J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, p. 79.
- R. K. Guy, Unsolved Problems in Number Theory, Section A3.
- F. Lemmermeyer, Reciprocity Laws From Euler to Eisenstein, Springer-Verlag, 2000, p. 57.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 19.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 47.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 132-134.
- B. Tuckerman, The 24th Mersenne prime, Notices Amer. Math. Soc., 18 (Jun, 1971), Abstract 684-A15, p. 608.
Links
- P. T. Bateman, J. L. Selfridge, and S. S. Wagstaff, Jr., The new Mersenne conjecture, Amer. Math. Monthly 96 (1989), no. 2, 125--128. MR0992073 (90c:11009).
- J. Bernheiden, Mersenne Numbers (Text in German)
- Andrew R. Booker, The Nth Prime Page
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- P. G. Brown, A Note on Ramanujan's (FALSE) Conjectures Regarding 'Mersenne Primes'
- C. K. Caldwell, Mersenne Primes
- C. K. Caldwell, Recent Mersenne primes
- Zuling Chang, Martianus Frederic Ezerman, Adamas Aqsa, Fahreza, San Ling, Janusz Szmidt, and Huaxiong Wang, Binary de Bruijn Sequences via Zech's Logarithms, 2018.
- Keith Conrad, Square patterns and infinitude of primes, University of Connecticut, 2019.
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
- Leonhard Euler, Observations on a theorem of Fermat and others on looking at prime numbers, arXiv:math/0501118 [math.HO], 2005-2008.
- Leonhard Euler, Observationes de theoremate quodam Fermatiano aliisque ad numeros primos spectantibus
- G. Everest et al., Primes generated by recurrence sequences, arXiv:math/0412079 [math.NT], 2006.
- G. Everest et al., Primes generated by recurrence sequences, Amer. Math. Monthly, 114 (No. 5, 2007), 417-431.
- F. Firoozbakht and M. F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
- Luis H. Gallardo and Olivier Rahavandrainy, On (unitary) perfect polynomials over F_2 with only Mersenne primes as odd divisors, arXiv:1908.00106 [math.NT], 2019.
- Donald B. Gillies, Three new Mersenne primes and a statistical theory Mathematics of Computation 18.85 (1964): 93-97.
- GIMPS (Great Internet Mersenne Prime Search), Distributed Computing Projects
- GIMPS, Milestones Report
- GIMPS, GIMPS Project discovers largest known prime number 2^77232917-1
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- Wilfrid Keller, List of primes k.2^n - 1 for k < 300
- H. Lifchitz, Mersenne and Fermat primes field
- A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996; see p. 143.
- R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012.
- Romeo Meštrović, Goldbach-type conjectures arising from some arithmetic progressions, University of Montenegro, 2018.
- Romeo Meštrović, Goldbach's like conjectures arising from arithmetic progressions whose first two terms are primes, arXiv:1901.07882 [math.NT], 2019.
- G. P. Michon, Perfect Numbers, Mersenne Primes
- Albert A. Mullin, Letter to the editor, about "The new Mersenne conjecture" [Amer. Math. Monthly 96 (1989), no. 2, 125-128; MR0992073 (90c:11009)] by P. T. Bateman, J. L. Selfridge and S. S. Wagstaff, Jr., Amer. Math. Monthly 96 (1989), no. 6, 511. MR0999415 (90f:11008).
- Curt Noll and Laura Nickel, The 25th and 26th Mersenne primes, Math. Comp. 35 (1980), 1387-1390.
- M. Oakes, A new series of Mersenne-like Gaussian primes
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
- H. J. Smith, Mersenne Primes
- B. Tuckerman, The 24th Mersenne prime, Proc. Nat. Acad. Sci. USA, 68 (1971), 2319-2320.
- H. S. Uhler, On All Of Mersenne's Numbers Particularly M_193, PNAS 1948 34 (3) 102-103.
- H. S. Uhler, First Proof That The Mersenne Number M_157 Is Composite, PNAS 1944 30(10) 314-316.
- S. S. Wagstaff, Jr., The Cunningham Project
- Eric Weisstein's World of Mathematics, Cunningham Number
- Eric Weisstein's World of Mathematics, Integer Sequence Primes
- Eric Weisstein's World of Mathematics, Mersenne Prime
- Eric Weisstein's World of Mathematics, Repunit
- Eric Weisstein's World of Mathematics, Wagstaff's Conjecture
- David Whitehouse, Number takes prime position (2^13466917 - 1 found after 13000 years of computer time)
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatshefte für Mathematik und Physik, Vol. 3, No. 1 (1892), 265-284.
- Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime
- Index entries for "core" sequences
Crossrefs
Cf. A000668 (Mersenne primes).
Cf. A028335 (integer lengths of Mersenne primes).
Cf. A000225 (Mersenne numbers).
Cf. A001348 (Mersenne numbers with n prime).
Cf. A016027, A046051, A057429, A057951-A057958, A066408, A117293, A127962, A127963, A127964, A127965, A127961, A000979, A000978, A124400, A124401, A127955, A127956, A127957, A127958, A127936, A134458, A000225, A000396, A090748, A133033, A135655, A006516, A019279, A061652, A133033, A135650, A135652, A135653, A135654, A260073, A050475, A379590.
Programs
-
Mathematica
MersennePrimeExponent[Range[48]] (* Eric W. Weisstein, Jul 17 2017; updated Oct 21 2024 *)
-
PARI
isA000043(n) = isprime(2^n-1) \\ Michael B. Porter, Oct 28 2009
-
PARI
is(n)=my(h=Mod(2,2^n-1)); for(i=1, n-2, h=2*h^2-1); h==0||n==2 \\ Lucas-Lehmer test for exponent e. - Joerg Arndt, Jan 16 2011, and Charles R Greathouse IV, Jun 05 2013 forprime(e=2,5000,if(is(e),print1(e,", "))); /* terms < 5000 */
-
Python
from sympy import isprime, prime for n in range(1,100): if isprime(2**prime(n)-1): print(prime(n), end=', ') # Stefano Spezia, Dec 06 2018
Formula
a(n) = log((1/2)*(1+sqrt(1+8*A000396(n))))/log(2). - Artur Jasinski, Sep 23 2008 (under the assumption there are no odd perfect numbers, Joerg Arndt, Feb 23 2014)
Extensions
Also in the sequence: p = 74207281. - Charles R Greathouse IV, Jan 19 2016
Also in the sequence: p = 77232917. - Eric W. Weisstein, Jan 03 2018
Also in the sequence: p = 82589933. - Gord Palameta, Dec 21 2018
a(46) = 42643801 and a(47) = 43112609, whose ordinal positions in the sequence are now confirmed, communicated by Eric W. Weisstein, Apr 12 2018
a(48) = 57885161, whose ordinal position in the sequence is now confirmed, communicated by Benjamin Przybocki, Jan 05 2022
Also in the sequence: p = 136279841. - Eric W. Weisstein, Oct 21 2024
As of Jan 31 2025, 48 terms are known, and are shown in the DATA section. Four additional numbers are known to be in the sequence, namely 74207281, 77232917, 82589933, and 136279841, but they may not be the next terms. See the GIMP website for the latest information. - N. J. A. Sloane, Jan 31 2025
Comments