A179118 Number of Collatz steps to reach 1 starting with 2^n + 1.
1, 7, 5, 19, 12, 26, 27, 121, 122, 35, 36, 156, 113, 52, 53, 98, 99, 100, 101, 102, 72, 166, 167, 168, 169, 170, 171, 247, 173, 187, 188, 251, 252, 178, 179, 317, 243, 195, 196, 153, 154, 155, 156, 400, 326, 495, 496, 161, 162, 331, 332, 408, 471, 410, 411, 337, 338, 339, 340, 553
Offset: 0
Examples
a(1)=7 because the trajectory of 2^1+1=3 is (3,10,5,16,8,4,2,1).
Links
- Dmitry Kamenetsky, Table of n, a(n) for n = 0..9999 (terms n = 1...1000 from Mitch Harris)
- MathOverflow, Introduced on Mathoverflow by Henrik Rüping
Crossrefs
Programs
-
Mathematica
CollatzNext[n_] := If[Mod[n, 2] == 0, n/2, 3 n + 1]; CollatzPath[n_] := CollatzPath[n] = Module[{k = n, l = {}}, While[k != 1, k = CollatzNext[k]; l = Append[l, k]]; l]; Collatz[n_] := Length[CollatzPath[n]]; Table[Collatz[2^n+1],{n,1,50}] f[n_] := Length@ NestWhileList[If[OddQ@ #, 3 # + 1, #/2] &, 2^n + 1, # > 1 &] - 1; Array[f, 60] (* Robert G. Wilson v, Jan 05 2011 *) Array[-1 + Length@ NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, 2^# + 1, # > 1 &] &, 60, 0] (* Michael De Vlieger, Nov 25 2018 *)
-
PARI
nbsteps(n)= s=n; c=0; while(s>1, s=if(s%2, 3*s+1, s/2); c++); c; a(n) = nbsteps(2^n+1); \\ Michel Marcus, Oct 28 2018
-
Python
def steps(a): if a==1: return 0 elif a%2==0: return 1+steps(a//2) else: return 1+steps(a*3+1) for n in range(60): print(n, steps((1<
Formula
Extensions
a(0)=1 prepended by Alois P. Heinz, Dec 12 2018
Comments