cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Stefano Spezia

Stefano Spezia's wiki page.

Stefano Spezia has authored 1025 sequences. Here are the ten most recent ones:

A387247 Decimal expansion of (2*log(3) + 7)/8.

Original entry on oeis.org

1, 1, 4, 9, 6, 5, 3, 0, 7, 2, 1, 6, 7, 0, 2, 7, 4, 2, 2, 8, 4, 8, 8, 1, 1, 3, 0, 9, 2, 3, 0, 6, 3, 1, 4, 2, 6, 1, 6, 1, 8, 7, 2, 6, 3, 9, 4, 5, 5, 6, 8, 7, 3, 6, 2, 9, 3, 3, 6, 7, 3, 5, 8, 3, 4, 0, 9, 3, 7, 3, 5, 7, 3, 3, 0, 4, 6, 5, 2, 2, 4, 1, 7, 1, 8, 4, 0, 3, 9, 3, 8, 7, 0, 3, 4, 3, 3, 0, 2, 2
Offset: 1

Author

Stefano Spezia, Aug 24 2025

Keywords

Examples

			1.149653072167027422848811309230631426161872639...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2Log[3]+7)/8,10,100][[1]]

A387235 Decimal expansion of 2*log(2)/3.

Original entry on oeis.org

4, 6, 2, 0, 9, 8, 1, 2, 0, 3, 7, 3, 2, 9, 6, 8, 7, 2, 9, 4, 4, 8, 2, 1, 4, 1, 4, 3, 0, 5, 4, 5, 1, 0, 4, 5, 3, 8, 3, 6, 6, 6, 7, 5, 6, 2, 4, 0, 1, 7, 0, 1, 6, 9, 4, 1, 3, 7, 8, 6, 6, 7, 2, 9, 9, 5, 5, 9, 5, 7, 4, 7, 9, 7, 9, 7, 9, 6, 4, 7, 7, 0, 7, 0, 5, 7, 5, 5, 5, 1, 3, 3, 0, 9, 4, 5, 7, 9, 1, 6
Offset: 0

Author

Stefano Spezia, Aug 23 2025

Keywords

Comments

Area enclosed by the curve of the equation x^6 + y^6 - x^3*y + x*y^3 = 0.
The asymptotic mean of A256232. - Amiram Eldar, Aug 23 2025

Examples

			0.46209812037329687294482141430545104538366675624...
		

Programs

  • Mathematica
    RealDigits[2Log[2]/3,10,100][[1]]

Formula

Equals log(4)/3 = A010701*A016627.
Equals Sum_{k>=0} (-1)^k/((3*k + 1)*(3*k + 2)) = Integral_{x=0..1} x^2*log(1 + 1/x^3) = -Integral_{x=0..1} log[1 - x^6]/x^4. [Shamos]
Equals A016627/3 = 2*A193535. - Hugo Pfoertner, Aug 23 2025

A387131 Decimal expansion of the real part of the complex solutions to log(z) = -1/z on the principal branch of log(z).

Original entry on oeis.org

1, 6, 8, 3, 7, 6, 3, 7, 9, 0, 8, 7, 2, 2, 2, 9, 1, 0, 5, 5, 7, 0, 2, 9, 0, 4, 0, 1, 9, 6, 4, 1, 9, 7, 9, 8, 8, 7, 7, 3, 7, 4, 7, 4, 8, 2, 9, 2, 5, 4, 1, 3, 3, 6, 1, 6, 4, 4, 4, 6, 0, 5, 7, 6, 4, 0, 8, 1, 7, 1, 1, 4, 8, 7, 7, 8, 5, 2, 0, 5, 8, 8, 1, 2, 8, 3, 2, 8, 4, 7, 9, 7, 8, 9, 9, 5, 2, 3, 6, 6
Offset: 0

Author

Stefano Spezia, Aug 17 2025

Keywords

Examples

			0.16837637908722291055702904019641979887737474829...
		

Crossrefs

Cf. A387132 (absolute value of the imaginary part).

Programs

  • Mathematica
    RealDigits[Re[-1/ProductLog[-1]],10,100][[1]]

Formula

Equals Re(-1/LambertW(-1)).

A387132 Decimal expansion of the absolute value of the imaginary part of the complex solutions to log(z) = -1/z on the principal branch of log(z).

Original entry on oeis.org

7, 0, 7, 7, 5, 4, 1, 8, 8, 7, 8, 4, 7, 2, 7, 6, 1, 6, 4, 7, 2, 8, 4, 5, 8, 9, 3, 0, 7, 6, 5, 1, 6, 2, 3, 9, 4, 9, 3, 8, 4, 0, 8, 1, 4, 2, 3, 7, 5, 0, 1, 5, 5, 7, 1, 7, 8, 1, 0, 4, 5, 9, 3, 4, 5, 7, 6, 8, 8, 1, 8, 9, 8, 6, 1, 3, 5, 2, 5, 6, 8, 1, 6, 3, 1, 1, 1, 1, 0, 6, 4, 5, 5, 7, 1, 6, 0, 5, 6, 5
Offset: 0

Author

Stefano Spezia, Aug 17 2025

Keywords

Examples

			0.7077541887847276164728458930765162394938408142...
		

Crossrefs

Cf. A387131 (real part).

Programs

  • Mathematica
    RealDigits[Im[-1/ProductLog[-1]],10,100][[1]]

Formula

Equals Im(-1/LambertW(-1)).
Equals -Im(-1/LambertW(-1, -1)).

A387101 Decimal expansion of the smallest real solution to e^x = x^3.

Original entry on oeis.org

1, 8, 5, 7, 1, 8, 3, 8, 6, 0, 2, 0, 7, 8, 3, 5, 3, 3, 6, 4, 5, 6, 9, 8, 0, 9, 8, 2, 0, 6, 2, 7, 6, 6, 6, 9, 9, 9, 0, 4, 4, 1, 5, 3, 3, 1, 7, 8, 8, 9, 0, 8, 0, 5, 7, 3, 7, 9, 5, 0, 8, 2, 2, 3, 4, 7, 8, 8, 1, 2, 0, 5, 6, 7, 6, 5, 2, 6, 6, 2, 0, 3, 8, 3, 3, 1, 4, 0, 7, 7, 8, 5, 6, 4, 7, 7, 6, 5, 2, 1
Offset: 1

Author

Stefano Spezia, Aug 16 2025

Keywords

Comments

Equivalently, the smallest real solution to log(x) = x/3.

Examples

			1.85718386020783533645698098206276669990441533...
		

Crossrefs

Cf. A030178, A126583, A126584, A387102 (largest).

Programs

  • Mathematica
    RealDigits[-3*ProductLog[-1/3],10,100][[1]]
  • PARI
    -3*lambertw(-1/3) \\ Michel Marcus, Aug 18 2025

Formula

Equals -3*LambertW(-1/3).

A387102 Decimal expansion of the largest real solution to e^x = x^3.

Original entry on oeis.org

4, 5, 3, 6, 4, 0, 3, 6, 5, 4, 9, 7, 3, 5, 2, 7, 4, 2, 1, 6, 9, 0, 2, 1, 9, 0, 3, 4, 2, 1, 6, 1, 1, 6, 1, 1, 3, 8, 1, 0, 9, 5, 1, 1, 5, 5, 4, 0, 6, 0, 7, 8, 3, 6, 2, 7, 7, 7, 8, 5, 6, 4, 2, 1, 9, 9, 6, 9, 3, 1, 4, 8, 1, 5, 3, 4, 7, 2, 4, 4, 8, 1, 9, 7, 2, 7, 9, 6, 4, 6, 4, 4, 5, 8, 3, 3, 9, 5, 0, 5
Offset: 1

Author

Stefano Spezia, Aug 16 2025

Keywords

Comments

Equivalently, the largest real solution to log(x) = x/3.

Examples

			4.5364036549735274216902190342161161138109511554...
		

Crossrefs

Cf. A030178, A126583, A126584, A366565, A387101 (smallest).

Programs

  • Mathematica
    RealDigits[-3*ProductLog[-1,-1/3],10,100][[1]]

Formula

Equals -3*LambertW(-1, -1/3).

A386974 a(n) is the permanent of the symmetric n X n matrix M_n where M_n(j,k) = n for j = k, M_n(j,n) = n-j, M_n(n,k) = n-k, M_n(j,k) = 0 otherwise.

Original entry on oeis.org

1, 1, 5, 42, 480, 6875, 117936, 2352980, 53477376, 1363146165, 38500000000, 1193121531646, 40246286745600, 1467779362716303, 57544321060925440, 2413281884765625000, 107798160680740192256, 5109425146945021190505, 256115971082717276995584, 13536555538728461399269330
Offset: 0

Author

Stefano Spezia, Aug 11 2025

Keywords

Examples

			a(5) = permanent(M_5) = 6875 where M_5 is the matrix
  [5 0 0 0 4]
  [0 5 0 0 3]
  [0 0 5 0 2]
  [0 0 0 5 1]
  [4 3 2 1 5]
		

Crossrefs

Cf. A174963 (determinants), A386975.

Programs

  • Mathematica
    M[j_, k_, n_]:=If[j==k, n, If[k==n, n-j, If[j==n, n-k, 0]]]; a[n_]:=Permanent[Table[M[i, j, n], {i, n}, {j, n}]];Join[{1}, Array[a, 18]]
  • PARI
    a(n) = matpermanent(matrix(n, n, j, k, if (j==k, n, if (k==n, n-j, if (j==n, n-k, 0))))); \\ Michel Marcus, Aug 12 2025

A386975 a(n) is the permanent of the n X n matrix M_n with M_n(j,k) = j for j <> k, M_n(j,k) = n+j for j = k.

Original entry on oeis.org

1, 2, 14, 183, 3792, 114780, 4807728, 267380071, 19098388480, 1705287529422, 186174804704000, 24402257980061599, 3781731531452940288, 684046276855242721368, 142823583210894978115584, 34092816821609506532859375, 9226267072346511233190461440, 2809774286001810901571097532538
Offset: 0

Author

Stefano Spezia, Aug 11 2025

Keywords

Examples

			a(5) = permanent(M_5) = 114780 where M_5 is the matrix
  [6, 1, 1, 1,  1]
  [2, 7, 2, 2,  2]
  [3, 3, 8, 3,  3]
  [4, 4, 4, 9,  4]
  [5, 5, 5, 5, 10]
		

Crossrefs

Cf. A174962 (determinants), A386974.

Programs

  • Mathematica
    M[j_,k_,n_]:=If[j!=k,j,If[j==k,n+j]]; a[n_]:=Permanent[Table[M[i,j,n],{i,n},{j,n}]];Join[{1}, Array[a,17]]
  • PARI
    a(n) = matpermanent(matrix(n, n, j, k, if (j==k, n+j, j))); \\ Michel Marcus, Aug 12 2025

A385570 a(n) is the least positive integer k such that 10^(k/A386725(k)) has at least n correct decimal digits of Pi.

Original entry on oeis.org

1, 1, 81, 85, 87, 785, 1221, 5669, 5669, 193967, 279002, 296009, 893696, 893696, 42601399, 48857271, 98608238, 936331413
Offset: 1

Author

Stefano Spezia, Jul 31 2025

Keywords

Examples

			   n   approximated value of Pi
   -   ------------------------
   1    3.16227766016837933...
   2    3.16227766016837933...
   3    3.14002073072468031...
   4    3.14105848907489924...
   5    3.14154190501421816...
   6    3.14159426168000789...
   7    3.14159239635221012...
   8    3.14159265464843386...
   9    3.14159265464843386...
  10    3.14159265302248860...
  11    3.14159265351804869...
  12    3.14159265358299421...
  13    3.14159265358975264...
  14    3.14159265358975264...
  15    3.14159265358979960...
  16    3.14159265358979359...
  17    3.14159265358979322...
  ...
		

Crossrefs

Programs

  • Mathematica
    A386725[n_]:=10^(n/Round[n/Log10[Pi]]); a[n_]:=Module[{k=1},While[RealDigits[A386725[k],10,n][[1]]!=RealDigits[Pi,10,n][[1]], k++]; k]; Array[a,10]

A386823 Triangle read by rows: T(n,k) = numerator((n^2 - k^2)/(n^2 + k^2)), where 0 <= k < n.

Original entry on oeis.org

1, 1, 3, 1, 4, 5, 1, 15, 3, 7, 1, 12, 21, 8, 9, 1, 35, 4, 3, 5, 11, 1, 24, 45, 20, 33, 12, 13, 1, 63, 15, 55, 3, 39, 7, 15, 1, 40, 77, 4, 65, 28, 5, 16, 17, 1, 99, 12, 91, 21, 3, 8, 51, 9, 19, 1, 60, 117, 56, 105, 48, 85, 36, 57, 20, 21, 1, 143, 35, 15, 4, 119, 3, 95, 5, 7, 11, 23
Offset: 1

Author

Stefano Spezia, Aug 04 2025

Examples

			The triangle of the fractions begins as:
  1/1;
  1/1,   3/5;
  1/1,   4/5,  5/13;
  1/1, 15/17,   3/5,  7/25;
  1/1, 12/13, 21/29,  8/17,  9/41;
  1/1, 35/37,   4/5,   3/5,  5/13, 11/61;
  1/1, 24/25, 45/53, 20/29, 33/65, 12/37, 13/85;
  ...
		

Crossrefs

Cf. A000012 (k=0), A000290, A005408, A066830 (k=1), A069011, A094728, A386824 (denominators).

Programs

  • Mathematica
    T[n_,k_]:=Numerator[(n^2-k^2)/(n^2+k^2)]; Table[T[n,k],{n,12},{k,0,n-1}]//Flatten

Formula

T(n,n-1) = A005804(n-1).