A386725 a(n) is the nearest integer to n/log_10(Pi).
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129
Offset: 0
Examples
a(n) = 2*n corresponds to the Brahmagupta's approximation 10^(1/2) = sqrt(10) of Pi (cf. A010467).
Programs
-
Mathematica
a[n_]:=Round[n/Log10[Pi]]; Array[a,65,0]
Formula
a(n) = round(n/log10(Pi)).
a(n) >= 2*n.
Comments