cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A001504 a(n) = (3*n+1)*(3*n+2).

Original entry on oeis.org

2, 20, 56, 110, 182, 272, 380, 506, 650, 812, 992, 1190, 1406, 1640, 1892, 2162, 2450, 2756, 3080, 3422, 3782, 4160, 4556, 4970, 5402, 5852, 6320, 6806, 7310, 7832, 8372, 8930, 9506, 10100, 10712, 11342, 11990, 12656, 13340, 14042, 14762, 15500, 16256, 17030
Offset: 0

Views

Author

Keywords

Comments

The oblong numbers (A002378) not divisible by 3. - Gionata Neri, May 10 2015
The continued fraction expansion of sqrt(a(n)+1) is [3n+1; {1, 1, 2n, 1, 1,6n+2}]. For n=0, this collapses to [1; {1, 2}]. - Magus K. Chu, Nov 13 2024

Crossrefs

Subsequence of A002378.

Programs

Formula

a(n) = A060544(n+1)*2.
Sum_{k>=0} 1/a(k) = (Pi/3)/sqrt(3) = A073010. - Benoit Cloitre, Aug 20 2002
a(n) = 18*n + a(n-1) with a(0) = 2. - Vincenzo Librandi, Nov 12 2010
Sum_{n>=0} (-1)^n/a(n) = 2*log(2)/3 (A387235). - Amiram Eldar, Jan 14 2021
G.f.: -2*(x^2+7*x+1)/(x-1)^3. - Alois P. Heinz, Feb 28 2021
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A016777(n)*A016789(n).
Product_{n>=0} (1 - 1/a(n)) = 2*cos(sqrt(5)*Pi/6)/sqrt(3).
Product_{n>=0} (1 + 1/a(n)) = 2*cosh(sqrt(3)*Pi/6)/sqrt(3). (End)
E.g.f.: exp(x)*(2 + 18*x + 9*x^2). - Stefano Spezia, Aug 23 2025
Showing 1-1 of 1 results.