cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Vincenzo Librandi

Vincenzo Librandi's wiki page.

Vincenzo Librandi has authored 3317 sequences. Here are the ten most recent ones:

A386618 Primes of the form 2^k + 13^k.

Original entry on oeis.org

2, 173, 815730977
Offset: 1

Author

Vincenzo Librandi, Aug 17 2025

Keywords

Comments

If 13^k + 2^k is prime then k is either 0 or a power of 2. The corresponding values of k for a(1)-a(4) are 0, 2, 8 and 512. The fourth value is too long to enter.

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 13^n+2^n ];
  • Mathematica
    Select[Table[2^n+13^n,{n,0,600}],PrimeQ]

A385951 Number of digits in 5^(n!).

Original entry on oeis.org

1, 1, 2, 5, 17, 84, 504, 3523, 28183, 253643, 2536423, 27900646, 334807751, 4352500756, 60935010579, 914025158672, 14624402538737, 248614843158529, 4475067176853513, 85026276360216746, 1700525527204334919, 35711036071291033288, 785642793568402732327
Offset: 0

Author

Vincenzo Librandi, Jul 27 2025

Keywords

Crossrefs

Subsequence of A210435.

Programs

  • Mathematica
    Array[Floor[#! Log10@5+1]&,22]

Formula

a(n) = A055642(A220078(n)).

A385950 Number of digits in 3^(n!).

Original entry on oeis.org

1, 1, 1, 3, 12, 58, 344, 2405, 19238, 173138, 1731378, 19045154, 228541845, 2971043978, 41594615682, 623919235225, 9982707763599, 169706031981174, 3054708575661119, 58039462937561246, 1160789258751224920, 24376574433775723304, 536284637543065912676
Offset: 0

Author

Vincenzo Librandi, Jul 27 2025

Keywords

Crossrefs

Subsequence of A034888.

Programs

  • Mathematica
    Array[Floor[#! Log10@3+1]&,22]

Formula

a(n) = A055642(A100731(n)).

A385949 Number of digits in 7^(n!).

Original entry on oeis.org

1, 1, 2, 6, 21, 102, 609, 4260, 34075, 306670, 3066692, 33733610, 404803314, 5262443074, 73674203025, 1105113045374, 17681808725979, 300590748341642, 5410633470149548, 102802035932841396, 2056040718656827910, 43176855091793386107, 949890812019454494354
Offset: 0

Author

Vincenzo Librandi, Jul 24 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Array[ Floor[#! Log10@7 + 1] &, 22]

Formula

a(n) = A055642(A220079(n)).

A384699 Triples of distinct primes whose sum is a perfect square ordered by increasing sum and then lexicographically.

Original entry on oeis.org

2, 3, 11, 3, 5, 17, 5, 7, 13, 2, 3, 31, 2, 5, 29, 2, 11, 23, 3, 5, 41, 3, 17, 29, 5, 7, 37, 5, 13, 31, 7, 11, 31, 7, 13, 29, 7, 19, 23, 13, 17, 19, 2, 3, 59, 2, 19, 43, 3, 5, 73, 3, 7, 71, 3, 11, 67, 3, 17, 61, 3, 19, 59, 3, 31, 47, 3, 37, 41, 5, 17, 59, 5, 23, 53, 5, 29, 47, 7, 13, 61, 7, 31, 43, 11, 17, 53
Offset: 1

Author

Vincenzo Librandi, Jun 09 2025

Keywords

Comments

The list is a flattened sequence of all distinct unordered triples of primes (p_1, p_2, p_3), with p_1 < p_2 < p_3, such that p_1 + p_2 + p_3 is a perfect square. The triples are sorted in ascending order of the square value. The flattened list lists the primes in each triple in ascending order.

Examples

			The first triples are:
  (2, 3, 11) with sum 16.
  (3, 5, 17) with sum 25.
  (5, 7, 13) with sum 25.
  (2, 3, 31) with sum 36.
		

Crossrefs

Programs

  • Magma
    limit := 400; triplette := []; for k in [4..Isqrt(limit)] do s := k^2; P := PrimesUpTo(s); for i in [1..#P-2] do for j in [i+1..#P-1] do for l in [j+1..#P] do  if P[i] + P[j] + P[l] eq s then Append(~triplette, [P[i], P[j], P[l]]); end if; end for; end for; end for; end for; flat := &cat triplette;
  • Mathematica
    maxSquare=400; triplette=Reap[Do[s=k^2; primes=Select[Prime[Range[PrimePi[s]]], #
    				

A384697 Primes of the form floor(2^k / 5).

Original entry on oeis.org

3, 409, 6553, 1677721, 6871947673, 472236648286964521369, 7922816251426433759354395033, 2451992865385422173373355243440494693789982595493763481
Offset: 1

Author

Vincenzo Librandi, Jun 07 2025

Keywords

Crossrefs

Cf. A383966 (corresponding k).

Programs

  • Magma
    [ a: k in [0..500] | IsPrime(a) where a is 2^k div 5 ];
  • Mathematica
    Select[Table[Quotient[(2^n), 5],{n,1,250}],PrimeQ]

Formula

a(n) = floor(2^A383966(n)/5).

A383966 Numbers k such that floor(2^k / 5) is a prime.

Original entry on oeis.org

4, 11, 15, 23, 35, 71, 95, 183, 475, 579, 631, 759, 1519, 1771, 3031, 6035, 6951, 11423, 37451, 51935, 68051
Offset: 1

Author

Vincenzo Librandi, Jun 07 2025

Keywords

Comments

From David A. Corneth, Jun 07 2025: (Start)
Observation from Hugo Pfoertner: For k > 4, terms are equivalent to 3 (mod 4).
Proof: We may write 2^k = 2^(4*m + r) = 16^m * 2^r = (15 + 1)^m * 2^r with 0 <= r <= 3.
Floor dividing by 5 gives 3*t + floor(2^r) for some positive integer t. floor(2^r) = 0 for r in {0, 1, 2} so then floor(2^k) is a multiple of 3. For k > 4 and r < 3 we definitely do get a multiple of 3 that is larger than 3 hence composite. (End)
a(22) > 150000. - Hugo Pfoertner, Jun 08 2025

Examples

			From _David A. Corneth_, Jun 07 2025: (Start)
4 is in the sequence as floor(2^4/5) = 3 is prime.
5 is not in the sequence as floor(2^5/5) = 6 which is not prime.
7 is not in the sequence as floor(2^7/5) = 25 is not prime.
8 is not in the sequence as 8 > 4 and 8 is not equivalent to 3 (mod 4).
11 is in the sequence as floor(2^11/5) = 409 which is prime. (End)
		

Programs

  • Magma
    [n: n in [1..1000] | IsPrime(2^n div 5)];
  • Mathematica
    Select[Range[1,20000],PrimeQ[Quotient[2^#,5]]&]

Extensions

a(19)-a(21) from Hugo Pfoertner, Jun 07 2025

A383914 Primes p such that 12*2^p + 1 is also prime.

Original entry on oeis.org

3, 199, 3187, 44683, 59971, 213319, 303091, 916771
Offset: 1

Author

Vincenzo Librandi, May 17 2025

Keywords

Comments

If k is a term in A002253 and k-2 is prime, then k-2 is a term. - Amiram Eldar, May 17 2025

Examples

			3 is a term because 12*2^3+1 = 97 (prime).
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo (3500) | IsPrime(12*2^p+1)];
  • Mathematica
    Select[Prime[Range[3500]],PrimeQ[12 2^#+1]&]

Extensions

a(4)-a(8) from the b-file at A002253 added by Amiram Eldar, May 17 2025

A382118 Prime indices k such that prime(k) and prime(k) + 9 are anagrams.

Original entry on oeis.org

19, 73, 79, 163, 197, 241, 269, 281, 431, 439, 619, 647, 691, 739, 751, 761, 823, 877, 953, 1019, 1051, 1109, 1223, 1259, 1291, 1307, 1423, 1471, 1723, 1741, 1747, 1847, 1949, 1979, 2213, 2371, 2473, 2503, 2647, 2789, 2803, 2819, 2879, 2903, 2909, 3019, 3163, 3361
Offset: 1

Author

Vincenzo Librandi, Apr 15 2025

Keywords

Comments

Primes in A379208.

Examples

			The prime 19 is a term of the sequence because prime(19)= 67 and 67 + 9 = 76 are anagrams.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..10000] | IsPrime(n) and Sort(Intseq(NthPrime(n))) eq Sort(Intseq(NthPrime(n) + 9))];
  • Mathematica
    Select[Prime[Range[500]],Sort[IntegerDigits[Prime[#]]]==Sort[IntegerDigits[Prime[#]+9]]&]

A382082 F(k) such that F(k) + (F(k) reversed) is a palindrome, where F(k) is a Fibonacci number.

Original entry on oeis.org

0, 1, 2, 3, 13, 21, 34, 144, 233, 610, 4181, 832040, 102334155, 1134903170, 20365011074, 12200160415121876738
Offset: 1

Author

Vincenzo Librandi, Mar 21 2025

Keywords

Comments

Conjecture: The sequence appears to be finite.
The next term, F(k), has k > 3*10^5, if it exists. - Amiram Eldar, Mar 21 2025

Examples

			144 is in the sequence because 144 + 441 = 585 is a palindrome.
		

Crossrefs

Intersection of A000045 and A015976.

Programs

  • Magma
    Rev := func;
    [0] cat  [Fibonacci(n): n in [2..2*10^4] | q eq Rev(q) where q is Fibonacci(n)+Rev(Fibonacci(n))];
  • Mathematica
    DeleteDuplicates@ Select[Fibonacci[Range[0, 100]], PalindromeQ[# + IntegerReverse[#]] &] (* Amiram Eldar, Mar 21 2025 *)