cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Harvey P. Dale

Harvey P. Dale's wiki page.

Harvey P. Dale has authored 302 sequences. Here are the ten most recent ones:

A381218 Odd numbers with both an odd number of prime factors (counted with multiplicity) and an odd number of distinct prime factors. (Intersection of A067019 and A098903.)

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 27, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 105, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 165, 167, 173, 179, 181, 191, 193, 195, 197, 199, 211, 223, 227, 229, 231, 233, 239
Offset: 1

Author

Harvey P. Dale, Feb 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1,301,2],AllTrue[{PrimeOmega[#],PrimeNu[#]},OddQ]&]

A381004 Primes ending in 777.

Original entry on oeis.org

1777, 2777, 11777, 19777, 22777, 26777, 41777, 43777, 44777, 47777, 50777, 53777, 65777, 67777, 68777, 71777, 76777, 79777, 80777, 83777, 94777, 97777, 107777, 110777, 113777, 115777, 122777, 124777, 125777, 131777, 134777, 136777, 137777, 145777, 146777
Offset: 1

Author

Harvey P. Dale, Feb 11 2025

Keywords

Crossrefs

Cf. A193552.

Programs

  • Maple
    select(isprime, [i*1000+777$i=1..150])[];  # Alois P. Heinz, Feb 12 2025
  • Mathematica
    Select[Table[1000 n + 777, {n, 200}], PrimeQ]
  • PARI
    select(x->((x % 1000)==777), primes(20000)) \\ Michel Marcus, Feb 12 2025
    
  • PARI
    select(isprime, vector(200, n, 1000*n+777)) \\ Michel Marcus, Feb 12 2025
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A381004_gen(): # generator of terms
        return filter(isprime,count(777,1000))
    A381004_list = list(islice(A381004_gen(),20)) # Chai Wah Wu, Feb 12 2025

Formula

a(n) = 1000*A102343(n)+777. - R. J. Mathar, Feb 13 2025

A379371 Primes congruent to 67 mod 12345.

Original entry on oeis.org

67, 123517, 148207, 271657, 296347, 321037, 345727, 395107, 444487, 567937, 666697, 1061737, 1209877, 1407397, 1506157, 1530847, 1827127, 1876507, 1950577, 1999957, 2024647, 2098717, 2222167, 2296237, 2345617, 2469067, 2567827, 2617207, 2691277, 2814727
Offset: 1

Author

Harvey P. Dale, Dec 21 2024

Keywords

Comments

Primes congruent to 67 mod 24690. - Chai Wah Wu, Apr 30 2025

Crossrefs

Cf. A301619.

Programs

  • Maple
    select(isprime, [67+24690*i$i=0..114])[];  # Alois P. Heinz, Dec 21 2024
  • Mathematica
    Select[Range[67,3000000,12345],PrimeQ]

A378493 Dot product of the first n primes and the first n triangular numbers.

Original entry on oeis.org

2, 11, 41, 111, 276, 549, 1025, 1709, 2744, 4339, 6385, 9271, 13002, 17517, 23157, 30365, 39392, 49823, 62553, 77463, 94326, 114313, 137221, 163921, 195446, 230897, 269831, 313273, 360688, 413233, 476225, 545393, 622250, 704955, 798825, 899391, 1009762
Offset: 1

Author

Harvey P. Dale, Nov 28 2024

Keywords

Examples

			a(3) = dot product of {2,3,5} and {1,3,6} = 2*1+3*3+5*6 = 41.
		

Crossrefs

Partial sums of A196421.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 0,
          a(n-1)+ithprime(n)*n*(n+1)/2)
        end:
    seq(a(n), n=1..37);  # Alois P. Heinz, Nov 28 2024
  • Mathematica
    Table[Prime[Range[n]].Accumulate[Range[n]],{n,50}]

Formula

a(n) mod 2 = A166486(n-1).

A376334 Integer part of the product of three consecutive primes divided by their sum.

Original entry on oeis.org

3, 7, 16, 32, 59, 85, 125, 178, 249, 342, 431, 539, 632, 749, 924, 1102, 1289, 1458, 1645, 1836, 2036, 2324, 2663, 3038, 3352, 3579, 3765, 4005, 4482, 5067, 5770, 6129, 6676, 7123, 7729, 8204, 8775, 9362, 9964, 10515, 11230, 11809, 12499, 12845, 13627, 14792
Offset: 1

Author

Harvey P. Dale, Sep 20 2024

Keywords

Examples

			a(5) = Floor[(prime(5)*prime(6)*prime(7))/(prime(5)+prime(6)+prime(7))]==59.
		

Crossrefs

Cf. A160830.

Programs

  • Mathematica
    Floor[Times@@#/Total[#]&/@Partition[Prime[Range[100]],3,1]]

A373799 Index of n-th prime in A374965.

Original entry on oeis.org

2, 5, 9, 14, 19, 22, 25, 36, 38, 43, 47, 51, 56, 65, 72, 74, 76, 97, 100, 102, 105, 107, 110, 112, 115, 122, 125, 128, 130, 238, 255, 260, 272, 284, 286, 290, 293, 296, 300, 316, 325, 331, 562, 565, 567, 575, 578, 607, 610, 612, 617, 627, 632, 649, 651, 654, 866, 875, 878
Offset: 1

Author

Harvey P. Dale and N. J. A. Sloane, Jul 28 2024

Keywords

Examples

			The fifth prime in order of appearance in A374965 is A375028(5) = 751 = A374965(19), so a(5) = 19.
		

Crossrefs

Cf. A373798 (first differences), A374965, A375028.

Programs

  • Python
    from itertools import count, islice
    from sympy import isprime, nextprime
    def A373799_gen(): # generator of terms
        a, p = 1, 3
        for i in count(1):
            if isprime(a):
                yield i
                a = p-1
            else:
                a = (a<<1)+1
            p = nextprime(p)
    A373799_list = list(islice(A373799_gen(),20)) # Chai Wah Wu, Jul 29 2024

A373798 Divide A374965 into "blocks" by saying that each prime term ends a block; sequence gives lengths of successive blocks.

Original entry on oeis.org

2, 3, 4, 5, 5, 3, 3, 11, 2, 5, 4, 4, 5, 9, 7, 2, 2, 21, 3, 2, 3, 2, 3, 2, 3, 7, 3, 3, 2, 108, 17, 5, 12, 12, 2, 4, 3, 3, 4, 16, 9, 6, 231, 3, 2, 8, 3, 29, 3, 2, 5, 10, 5, 17, 2, 3, 212, 9, 3, 4, 5, 22, 3, 5, 13, 5, 9, 4, 12, 8, 2, 57, 2, 65, 5, 3, 93, 9, 46
Offset: 1

Author

Harvey P. Dale and N. J. A. Sloane, Jul 28 2024

Keywords

Comments

The first 286 terms of the sequence are the result of dividing the first 10000 terms of A374965 into "blocks."
Comment from N. J. A. Sloane, Aug 09 2024 (Start):
Suppose p = A374965(t) is a prime in A374965, and is the s-th prime to appear there (that is, A375028(s) = p and A373799(s) = t). The next term in A374965 is by definition A374965(t+1) = prime(t+1) - 1 = r (say). Then the block starting with r has length a(s+1) = A050412(r) + 1. For example, p = 19 = A374965(5) is the second prime in A374695, so we have s = 2, t = 5, and r = prime(6) - 1 = 13 - 1 = 12. Then A050412(12) = 3, which tells us that a(3) = 3 + 1 = 4. The block is [12, 25, 51, 103].
For a larger example, the s = 285th prime in A374965 is p = 160077823 = A374965(7686), so t = 7686. The next block begins with r = prime(7687) - 1 = 78282. After 39 steps of double-and-add-1 (corresponding to A050412(78282) = 39) we reach the 286th prime in A374965, A374965(7726) = 43036534378594303. (End)

Examples

			A374965 begins
1, 3/ 4, 9, 19/ 12, 25, 51, 103/ 28, 57, 115, 231, 463/ 46, 93, 187, 375, 751/ 70, 141, 283/ 82, 165, ...,
where the primes are followed by slashes, to indicate the blocks. The lengths of the initial blocks are 2, 3, 4, 5, 5, 3, ...
		

Crossrefs

Programs

  • Mathematica
    nxt[{n_, a_}] := {n + 1, If[! PrimeQ[a], 2 a + 1, Prime[n + 1] - 1]}; vvv=NestList[nxt,{1,1},9999][[;;,2]]; Total/@Partition[Length/@SplitBy[vvv,PrimeQ],2] (* Harvey P. Dale, Jul 28 2024 *)

A375028 Primes in A374965 in order of their occurrence.

Original entry on oeis.org

3, 19, 103, 463, 751, 283, 331, 103423, 313, 2671, 1543, 1783, 3823, 68863, 20287, 733, 757, 407896063, 2083, 1093, 2251, 1153, 2371, 1213, 2467, 41023, 2707, 2803, 1453, 119909605576788675546376149602926591, 98238463, 25903, 3405823, 3590143, 3733, 14983, 7603, 7723, 15607, 65306623, 537343, 69151, 3859801644442622798122887215978426484283282692686288680974641672159756287
Offset: 1

Author

Harvey P. Dale and N. J. A. Sloane_, Jul 28 2024

Keywords

Comments

Sequences A050412 and A052333 suggest that it is possible that the present sequence has only finitely many terms. - N. J. A. Sloane, Jul 29 2024

Crossrefs

A373799 gives the indices where the primes appear in A374965.
A373804 gives the primes sorted into increasing or5der.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,If[!PrimeQ[a],2a+1,Prime[n+1]-1]}; Select[NestList[nxt, {1, 1}, 999][[;; , 2]], PrimeQ]
  • Python
    from itertools import islice
    from sympy import isprime, nextprime
    def A375028_gen(): # generator of terms
        a, p = 1, 3
        while True:
            if isprime(a):
                yield a
                a = p-1
            else:
                a = (a<<1)+1
            p = nextprime(p)
    A375028_list = list(islice(A375028_gen(),30)) # Chai Wah Wu, Jul 29 2024

A370867 Records in A224908.

Original entry on oeis.org

0, 2, 3, 5, 7, 8, 11, 12, 14, 15, 19, 20, 24, 27, 32, 39, 44, 49, 50, 52, 56, 57, 66, 68, 87, 103, 109, 121, 127, 148, 152, 163, 197, 216, 235, 260, 283, 325, 356, 374, 395, 406, 437, 485, 488, 494, 566, 569, 617, 644, 658, 673, 747, 770, 774, 809, 820, 826
Offset: 1

Author

Harvey P. Dale, Mar 03 2024

Keywords

Crossrefs

Cf. A224908.

Programs

  • Mathematica
    DeleteDuplicates[Table[Count[Prime[n]+Prime[Range[n-1]]+1,_?PrimeQ],{n,3000}],GreaterEqual]

A370139 Primes p such that the sums of three, five, and seven consecutive primes starting with p are prime.

Original entry on oeis.org

19, 29, 31, 53, 79, 379, 401, 839, 883, 1301, 1409, 1951, 1973, 2113, 2683, 2791, 2833, 3407, 3613, 3793, 3823, 4441, 4751, 4831, 5623, 5827, 6133, 6329, 7187, 7237, 7703, 8527, 9173, 10103, 10853, 11317, 12277, 13163, 13933, 14159, 14827, 15241, 15667
Offset: 1

Author

Harvey P. Dale, Feb 11 2024

Keywords

Examples

			379 is in the sequence because the seven consecutive primes starting with 379 are 379, 383, 389, 397, 401, 409, and 419, and (379+383+389)=1151, and (379+383+389+397+401)=1949, and (379+383+389+397+401+409+419)=2777, and 1151 and 1949 and 2777 are all primes.
		

Crossrefs

Intersection of A180948 and A182121.

Programs

  • Mathematica
    Select[Partition[Prime[Range[5000]],7,1],AllTrue[{Total[Take[#,3]],Total[Take[#,5]],Total[#]},PrimeQ]&][[;;,1]]