cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Vladimir Joseph Stephan Orlovsky

Vladimir Joseph Stephan Orlovsky's wiki page.

Vladimir Joseph Stephan Orlovsky has authored 1679 sequences. Here are the ten most recent ones:

A242366 Primes p such that p1 = ceiling(p/2) + p is prime and p2 = floor(p1/2) + p is prime.

Original entry on oeis.org

2, 3, 11, 59, 131, 179, 347, 1259, 1571, 1979, 2027, 2411, 2699, 2819, 3251, 3347, 4211, 5051, 5099, 5171, 5531, 6779, 7187, 8747, 10091, 12227, 13259, 13451, 13499, 13931, 14411, 14771, 15131, 15467, 16451, 16691, 17987, 18131, 18539, 18731, 18899, 19211
Offset: 1

Keywords

Comments

All terms after 2 are congruent to 3 mod 8, as this is needed for p, p1 and p2 to be odd. If p = 3 + 8*k, then p1 = 5 + 12*k and p2 = 5 + 14*k.

Examples

			11 is in the sequence since 11, ceiling(11/2) + 11 = 17 and floor(17/2) + 11 = 19 are all primes.
		

Crossrefs

Cf. A158714.

Programs

  • Maple
    N:= 100000: # to get all terms <= N
    filter:= proc(p) local p1, p2;
    if not isprime(p) then return false fi;
    p1:= ceil(p/2)+p;
    if not isprime(p1) then return false fi;
    p2:= floor(p1/2)+p;
    isprime(p2);
    end;
    select(filter,[2, seq(3+8*k, k=0 .. floor((N-3)/8))]);
  • Mathematica
    M = 100000;
    filterQ[p_] := Module[{p1, p2},
    If[!PrimeQ[p], Return[False]];
    p1 = Ceiling[p/2] + p;
    If[!PrimeQ[p1], Return[False]];
    p2 = Floor[p1/2] + p;
    PrimeQ[p2]];
    Select[Join[{2}, Table[3+8*k, {k, 0, Floor[(M-3)/8]}]], filterQ] (* Jean-François Alcover, Apr 27 2019, from Maple *)

A207992 Primes p of the form p = prime(n) + prime(n+1) - 5 and p = prime(k) + prime(k+1) + 5.

Original entry on oeis.org

13, 47, 73, 157, 167, 263, 467, 757, 877, 887, 2027, 2593, 3203, 3733, 4273, 4703, 4787, 5087, 5387, 6373, 6637, 7393, 7823, 8893, 9587, 10007, 10163, 12433, 13933, 15083, 15287, 15373, 16333, 17387, 17483, 18013, 18313, 19237, 19477, 20327, 21467, 23567
Offset: 1

Author

Keywords

Comments

n = k+1 or k+2. - Charles R Greathouse IV, Apr 16 2012

Examples

			3+5+5 = 13 = 7+11-5, 23+29-5 = 47 = 19+23+5
		

Crossrefs

Programs

  • Mathematica
    a1 = Select[Table[Prime[n] + Prime[n + 1] - 5, {n, 2010}], PrimeQ]; a2 = Select[Table[Prime[n] + Prime[n + 1] + 5, {n, 2000}], PrimeQ]; Intersection[a1, a2]
    With[{pr=Transpose[#+{5,-5}&/@Total/@Partition[Prime[Range[3000]],2,1]]}, Select[Intersection[pr[[1]],pr[[2]]], PrimeQ]] (* Harvey P. Dale, Mar 13 2013 *)
  • PARI
    p=2;q=3;r=5;forprime(s=7,1e4,if((r==p+10||r+s==p+q+10) && isprime(p+q+5), print1(p+q+5", "));p=q;q=r;r=s) \\ Charles R Greathouse IV, Apr 16 2012

A207991 Primes of the form prime(n) + prime(n+1) + 5.

Original entry on oeis.org

13, 17, 23, 29, 41, 47, 73, 83, 89, 149, 157, 167, 191, 227, 263, 281, 293, 313, 389, 401, 439, 461, 467, 563, 569, 653, 673, 701, 757, 857, 877, 887, 911, 929, 971, 983, 1049, 1069, 1093, 1109, 1153, 1213, 1277, 1289, 1433, 1451, 1487, 1499, 1523, 1637
Offset: 1

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[Prime[n] + Prime[n + 1] + 5, {n, 200}], PrimeQ]
    Select[Total[#]+5&/@Partition[Prime[Range[300]],2,1],PrimeQ] (* Harvey P. Dale, Dec 28 2021 *)
  • PARI
    p=2;forprime(q=3,1e4,if(isprime(t=p+q+5),print1(t", "));p=q) \\ Charles R Greathouse IV, Apr 13 2012

A207990 Primes of the form prime(n) + prime(n+1) - 5.

Original entry on oeis.org

3, 7, 13, 19, 31, 37, 47, 73, 79, 107, 139, 157, 167, 181, 193, 199, 211, 263, 271, 283, 347, 367, 379, 457, 467, 487, 503, 571, 613, 619, 643, 691, 757, 823, 859, 877, 887, 919, 941, 997, 1039, 1187, 1231, 1279, 1307, 1423, 1489, 1579, 1601, 1627, 1663
Offset: 1

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[Prime[n] + Prime[n + 1] - 5, {n, 200}], PrimeQ]
    Select[Total/@Partition[Prime[Range[200]],2,1]-5,PrimeQ] (* Harvey P. Dale, Apr 05 2020 *)
  • PARI
    p=2;forprime(q=3,1e4,if(isprime(t=p+q-5),print1(t", "));p=q) \\ Charles R Greathouse IV, Apr 13 2012

A207640 Squares that can be written as a sum of 3 distinct nonzero squares in exactly two ways.

Original entry on oeis.org

225, 361, 625, 900, 1444, 2500, 3600, 5776, 10000, 14400, 23104, 40000, 57600, 92416, 160000, 230400, 369664, 640000, 921600, 1478656, 2560000, 3686400
Offset: 1

Author

Keywords

Comments

k is a term if and only if 4*k is a term. Are 225, 361 and 625 the only terms not divisible by 4? - Robert Israel, Jan 28 2025

Crossrefs

Programs

  • Maple
    N:= 1000; # for squares up to N^2
    V:= Vector(N):
    for x from 1 to N-1 do
      for y from 1 to x-1 while x^2 + y^2 < N^2 do
        for z from 1 to y-1 do
          s:= x^2 + y^2 + z^2;
          if s > N^2 then break fi;
          if issqr(s) then
            v:= sqrt(s);
            V[v]:= V[v]+1
          fi
    od od od:
    map(`^`, select(t -> V[t]=2, [$1..N]),2); # Robert Israel, Jan 28 2025
  • Mathematica
    t = Sort[Select[Flatten[Table[x^2 + y^2 + z^2, {x, 400}, {y, x + 1, 400}, {z, y + 1, 400}]], # < 160006 && IntegerQ[Sqrt[#]] &]];
    f1[l_] := Module[{t = {}}, Do[If[l[[n]] != l[[n + 1]] && l[[n]] != l[[n - 1]], AppendTo[t, l[[n]]]], {n, Length[l] - 1}]; t];
    f2[l_] := Module[{t = {}}, Do[If[l[[n]] == l[[n + 1]], AppendTo[t, l[[n]]]], {n, Length[l] - 1}]; t];
    s1 = Join[{First[t]}, f1[t]];
    Complement[t, s1];
    t = f2[t];
    s2 = Join[{First[t]}, f1[t]]

Extensions

a(15)-a(22) from Robert Israel, Jan 28 2025

A207639 Squares that can be written as a sum of 3 distinct nonzero squares in more than one way.

Original entry on oeis.org

225, 361, 441, 529, 625, 729, 841, 900, 961, 1089, 1225, 1369, 1444, 1521, 1681, 1764, 1849, 2025, 2116, 2209, 2401, 2500, 2601, 2809, 2916, 3025, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4225, 4356, 4489, 4761, 4900, 5041, 5329, 5476, 5625, 5776, 5929
Offset: 1

Author

Keywords

Programs

  • Mathematica
    t = Sort[Select[Flatten[Table[x^2 + y^2 + z^2, {x, 400}, {y, x + 1, 400}, {z, y + 1, 400}]], # < 160006 && IntegerQ[Sqrt[#]] &]];
    f1[l_] := Module[{t = {}}, Do[If[l[[n]] != l[[n + 1]] && l[[n]] != l[[n - 1]], AppendTo[t, l[[n]]]], {n, Length[l] - 1}]; t];
    s1 = Join[{First[t]}, f1[t]];
    Complement[t, s1]

A207638 Squares that can be written as a sum of 3 distinct nonzero squares in no more than one way.

Original entry on oeis.org

49, 81, 121, 169, 196, 289, 324, 484, 676, 784, 1156, 1296, 1936, 2704, 3136, 4624, 5184, 7744, 10816, 12544, 18496, 20736, 30976, 43264, 50176, 73984, 82944, 123904
Offset: 1

Author

Keywords

Programs

  • Mathematica
    t = Sort[Select[Flatten[Table[x^2 + y^2 + z^2, {x, 400}, {y, x + 1, 400}, {z, y + 1, 400}]], # < 160006 && IntegerQ[Sqrt[#]] &]];
    f1[l_] := Module[{t = {}}, Do[If[l[[n]] != l[[n + 1]] && l[[n]] != l[[n - 1]], AppendTo[t, l[[n]]]], {n, Length[l] - 1}]; t];
    s1 = Join[{First[t]}, f1[t]]

A207637 Squarefree sums of 3 successive primes.

Original entry on oeis.org

10, 15, 23, 31, 41, 59, 71, 83, 97, 109, 131, 143, 159, 173, 187, 199, 211, 223, 235, 251, 269, 287, 301, 311, 319, 329, 349, 371, 395, 407, 439, 457, 471, 487, 503, 519, 533, 551, 565, 581, 589, 607, 633, 661, 679, 689, 701, 713, 731, 749, 771, 789, 803
Offset: 1

Author

Keywords

Crossrefs

Cf. A206329.

Programs

  • Mathematica
    Select[Table[Prime[n] + Prime[n + 1] + Prime[n + 2], {n, 300}], SquareFreeQ]
  • PARI
    p=2;q=3;forprime(r=5,1e4,if(issquarefree(t=p+q+r),print1(t", "));p=q;q=r) \\ Charles R Greathouse IV, Jun 14 2013

A207650 Squares that can be written as a sum of 3 distinct nonzero squares in 3 or more ways.

Original entry on oeis.org

441, 529, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1764, 1849, 2025, 2116, 2209, 2401, 2601, 2809, 2916, 3025, 3249, 3364, 3481, 3721, 3844, 3969, 4225, 4356, 4489, 4761, 4900, 5041, 5329, 5476, 5625, 5929, 6084, 6241, 6561, 6724, 6889, 7056, 7225, 7396
Offset: 1

Author

Keywords

Crossrefs

Programs

  • Mathematica
    t = Sort@Select[Flatten[Table[x^2 + y^2 + z^2, {x, 400}, {y, x + 1, 400}, {z, y + 1, 400}]], # < 160006 && IntegerQ[Sqrt[#]] &];
    f1[l_] := Module[{t = {}}, Do[If[l[[n]] != l[[n + 1]] && l[[n]] != l[[n - 1]], AppendTo[t, l[[n]]]], {n, Length[l] - 1}]; t];
    f2[l_] := Module[{t = {}}, Do[If[l[[n]] == l[[n + 1]], AppendTo[t, l[[n]]]], {n, Length[l] - 1}]; t];
    s1 = Join[{First[t]}, f1[t]];
    Complement[t, s1];
    t = f2[t];
    s2 = Join[{First[t]}, f1[t]];
    Complement[t, s2]

A207527 Primes that are the sum of three consecutive primes in A034962.

Original entry on oeis.org

131, 251, 337, 503, 743, 929, 1447, 1597, 3023, 3919, 4051, 4157, 5087, 5897, 6133, 7649, 7877, 8269, 9181, 9433, 9721, 11411, 11677, 13151, 13757, 14009, 14533, 18133, 18493, 18743, 20563, 21023, 21247, 22651, 22921, 23057, 23801, 23893, 24359, 24733, 24809
Offset: 1

Author

Keywords

Crossrefs

Cf. A034962.

Programs

  • Mathematica
    t = Select[Table[Prime[n] + Prime[n + 1] + Prime[n + 2], {n, 1000}], PrimeQ]; Select[Table[t[[n]] + t[[n + 1]] + t[[n + 2]], {n, Length[t] - 2}], PrimeQ]