A242366 Primes p such that p1 = ceiling(p/2) + p is prime and p2 = floor(p1/2) + p is prime.
Keywords
Examples
11 is in the sequence since 11, ceiling(11/2) + 11 = 17 and floor(17/2) + 11 = 19 are all primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 100000: # to get all terms <= N filter:= proc(p) local p1, p2; if not isprime(p) then return false fi; p1:= ceil(p/2)+p; if not isprime(p1) then return false fi; p2:= floor(p1/2)+p; isprime(p2); end; select(filter,[2, seq(3+8*k, k=0 .. floor((N-3)/8))]);
-
Mathematica
M = 100000; filterQ[p_] := Module[{p1, p2}, If[!PrimeQ[p], Return[False]]; p1 = Ceiling[p/2] + p; If[!PrimeQ[p1], Return[False]]; p2 = Floor[p1/2] + p; PrimeQ[p2]]; Select[Join[{2}, Table[3+8*k, {k, 0, Floor[(M-3)/8]}]], filterQ] (* Jean-François Alcover, Apr 27 2019, from Maple *)
Comments