cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Benoit Cloitre

Benoit Cloitre's wiki page.

Benoit Cloitre has authored 3076 sequences. Here are the ten most recent ones:

A372971 a(1)=1, then a(n) = floor(n/min(a(n-1),a(floor(n/2)))).

Original entry on oeis.org

1, 2, 3, 2, 2, 3, 2, 4, 4, 5, 5, 4, 4, 7, 7, 4, 4, 4, 4, 5, 4, 5, 4, 6, 6, 6, 6, 4, 7, 4, 7, 8, 8, 8, 8, 9, 9, 9, 9, 8, 8, 10, 10, 8, 9, 11, 11, 8, 8, 8, 8, 8, 8, 9, 9, 14, 14, 8, 8, 15, 15, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 9, 8, 9, 8, 9, 8, 9, 8, 10
Offset: 1

Author

Benoit Cloitre, May 18 2024

Keywords

Comments

It seems that limsup and liminf of a(n)/sqrt(n) exist (see link).

Crossrefs

Programs

  • Mathematica
    a[1]=1; a[n_]:=Floor[n/Min[a[n-1],a[Floor[n/2]]]]; Array[a,80] (* Stefano Spezia, May 18 2024 *)
  • PARI
    a(n)=if(n<2,1,floor(n/min(a(n-1),a(n\2))))

A372970 a(1)=1, then a(n) = floor(n/max(a(n-1),a(floor(n/2)))).

Original entry on oeis.org

1, 2, 1, 2, 2, 3, 2, 4, 2, 5, 2, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 5, 4, 6, 4, 6, 4, 7, 4, 7, 4, 8, 4, 8, 4, 9, 4, 9, 4, 10, 4, 10, 4, 8, 5, 9, 5, 8, 6, 8, 6, 8, 6, 9, 6, 8, 7, 8, 7, 8, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 8, 8, 8, 9, 8, 8, 8, 10, 8, 8, 8, 10, 8, 11, 8, 11, 8, 10, 9, 10, 9, 10, 9, 10, 9, 11
Offset: 1

Author

Benoit Cloitre, May 18 2024

Keywords

Comments

It seems that limsup and liminf of a(n)/sqrt(n) exist (see link).

Crossrefs

Programs

  • PARI
    a(n)=if(n<2,1,floor(n/max(a(n-1),a(n\2))))

A369633 Decimal expansion of integral of frac(1/x)^3 dx for x=0 to 1.

Original entry on oeis.org

1, 8, 7, 0, 7, 3, 0, 7, 2, 5, 0, 9, 7, 7, 9, 7, 8, 9, 4, 5, 0, 9, 5, 9, 1, 5, 7, 6, 7, 7, 7, 6, 6, 6, 3, 1, 9, 5, 7, 8, 1, 4, 8, 0, 2, 9, 6, 2, 2, 1, 5, 9, 3, 7, 6, 4, 6, 5, 5, 3, 5, 4, 8, 4, 1, 9, 2, 7, 1, 1, 6, 3, 0, 0, 4, 6, 5, 3, 4, 8, 5, 5, 9, 0, 1, 3, 2, 2, 3, 0, 6, 2, 1, 0, 6, 3, 3, 1, 0, 1
Offset: 0

Author

Benoit Cloitre, Jan 28 2024

Keywords

Examples

			0.18707307250977978945095915767776663195781480296221...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals, Problems in Mathematical Analysis, Springer, 2013. See p. 100.

Crossrefs

Programs

  • Mathematica
    RealDigits[3*Log[2*Pi]/2 - 6*Log[Glaisher] - EulerGamma - 1/2, 10, 120][[1]] (* Amiram Eldar, Jan 28 2024 *)
  • PARI
    3*log(2*Pi)/2 + 6*zeta'(-1) - Euler - 1 \\ Amiram Eldar, Jan 28 2024

Formula

Integral_{x=0..1} frac(1/x)^3 dx = (3/2)*log(2*Pi) - 6*log(A) - gamma - 1/2 = 0.1870730725..., where A is the Glaisher-Kinkelin constant.
Equals 3*log(2) - 3/2 + 3 * Sum_{k>=1} ((-1)^k/(k+3))*(zeta(k+1)-1).
From Vaclav Kotesovec, Jan 29 2024: (Start)
Equals 6 * Sum_{k>=1} (zeta(k+1) - 1) / ((k+1)*(k+2)*(k+3)).
Equals -1/2 + 6 * Sum_{k>=2} zeta(k) / (k*(k+1)*(k+2)). (End)

A356800 Numbers m for which Sum_{k=1..m} 1/k^s has no zero in the half-plane Re(s)>1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 28
Offset: 1

Author

Benoit Cloitre, Aug 28 2022

Keywords

A356216 Decimal expansion of the real part of the first nontrivial zero of zeta'.

Original entry on oeis.org

2, 4, 6, 3, 1, 6, 1, 8, 6, 9, 4, 5, 4, 3, 2, 1, 2, 8, 5, 8, 7, 4, 3, 9, 5, 0, 5, 3, 3, 0, 6, 3, 2, 9, 1, 4, 4, 9, 2, 0, 7, 9, 3, 1, 3, 4, 5, 6, 7, 3, 2, 3, 4, 7, 5, 0, 2, 2, 2, 1, 7, 3, 7, 0, 7, 2, 7, 1, 1, 7, 5, 0, 8, 6, 7, 1, 0, 2, 6, 3, 7, 1, 1, 9, 4, 8, 2, 4, 6, 8, 6, 1, 3, 2, 8, 3, 5, 5, 4, 2, 6, 7, 0, 5, 4, 1, 5, 5, 1, 0, 4, 1, 7, 8, 8, 8, 6, 1, 9, 2, 3, 5, 0, 7, 4, 0, 4
Offset: 1

Author

Benoit Cloitre, Aug 13 2022

Keywords

Comments

The nontrivial zero of zeta' with the smallest imaginary part is 2.4631618694543212... + i*23.2983204927628579...
The Riemann Hypothesis is equivalent to the assertion that zeta' (the derivative of the Riemann zeta function) has no nontrivial zero in the half-plane Re(z) < 1/2 (there are trivial zeros, e.g., -2.717262829204574...).

Examples

			2.463161869454321285874395053306329144920793134567323475022217370727117508671...
		

Crossrefs

Cf. A356092.

Programs

  • Mathematica
    RealDigits[Re[x /. FindRoot[Derivative[1][Zeta][x], {x, 2 + 23*I}, WorkingPrecision -> 100]]][[1]] (* Amiram Eldar, Aug 14 2022 *)

A356092 Decimal expansion of the imaginary part of the first nontrivial zero of zeta'.

Original entry on oeis.org

2, 3, 2, 9, 8, 3, 2, 0, 4, 9, 2, 7, 6, 2, 8, 5, 7, 9, 0, 2, 0, 1, 0, 9, 6, 1, 6, 2, 6, 5, 9, 7, 8, 4, 7, 0, 5, 0, 5, 9, 5, 7, 6, 3, 9, 0, 0, 2, 8, 8, 3, 4, 9, 0, 2, 1, 4, 3, 0, 6, 9, 0, 4, 1, 0, 2, 8, 8, 6, 9, 2, 0, 7, 8, 2, 5, 0, 8, 9, 3, 9, 2, 6, 2, 4, 4, 5, 2, 4, 1, 3, 2, 4, 7, 0, 3, 5, 4, 3, 6, 6, 3, 2, 7, 8, 9, 8, 7, 7, 2, 1, 2, 1, 7, 7, 2, 7, 4, 5, 9, 5, 6, 3, 1, 6, 6, 1
Offset: 2

Author

Benoit Cloitre, Aug 13 2022

Keywords

Comments

The nontrivial zero of zeta' with the smallest imaginary part is 2.4631618694543212... + i*23.2983204927628579...
The Riemann Hypothesis is equivalent to the assertion that zeta' has no nontrivial zero in the half-plane Re(z) < 1/2 (there are trivial zeros, e.g., -2.717262829204574...).

Crossrefs

Cf. A356216.

Programs

  • Mathematica
    RealDigits[Im[x /. FindRoot[Derivative[1][Zeta][x], {x, 2 + 23*I}, WorkingPrecision -> 100]]][[1]] (* Amiram Eldar, Aug 14 2022 *)

A356005 Number of integers k such that k*tau(k) <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8, 9, 10, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 21, 22, 22, 22, 22, 22
Offset: 1

Author

Benoit Cloitre, Jul 22 2022

Keywords

Comments

Partial sums of A327166. - Rémy Sigrist, Jul 23 2022

Crossrefs

Programs

  • Mathematica
    Table[Sum[If[k*DivisorSigma[0, k] <= n, 1, 0], {k, 1, n}], {n, 1, 100}] (* Vaclav Kotesovec, Jul 23 2022 *)
  • PARI
    a(n)=sum(k=1,n,if(k*numdiv(k)<=n,1,0))

Formula

a(n) is asymptotic to C*n/sqrt(log(n)) for a suitable constant C > 0.

A350459 Number of positive rational points on the unit circle with denominator <= n and numerator >= 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 4, 4, 4, 5, 5, 10, 10, 11, 11, 11, 19, 19, 19, 19, 19, 29, 32, 32, 32, 33, 44, 44, 44, 44, 47, 60, 60, 61, 61, 66, 82, 83, 83, 83, 83, 100, 100, 100, 100, 100, 122, 127, 134, 135, 135, 156, 156, 156, 159, 159, 183, 184, 184, 184, 184, 220, 220, 220, 227, 227, 254
Offset: 1

Author

Benoit Cloitre, Jan 01 2022

Keywords

Comments

A rational point (x,y) is of the form (a/c, b/d) with (a,b,c,d) integers. Sequence gives the number of quadruples (a,b,c,d) satisfying a >= b >= 1, 1 <= c <= n, 1 <= d <= n and such that a^2/c^2 + b^2/d^2 = 1.

Crossrefs

Cf. A046109.

Programs

  • PARI
    a(n)=sum(a=1,n,sum(b=1,a,sum(c=1,n,sum(d=1,n,if(a^2/c^2+b^2/d^2-1,0,1)))))
    
  • Python
    def A350459(n): return sum(1 for d in range(1,n+1) for c in range(1,n+1) for b in range(1,d+1) for a in range(1, b+1) if (a*d)**2 + (b*c)**2 == (c*d)**2) # Chai Wah Wu, Jan 19 2022

A349229 a(n) = Sum_{k=1..n} (-1)^A001222(k)*(-1)^A001222(k+1).

Original entry on oeis.org

-1, 0, -1, -2, -3, -4, -3, -4, -3, -4, -3, -2, -3, -2, -1, -2, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 2, 3, 4, 5, 4, 5, 6, 7, 6, 5, 6, 7, 6, 7, 8, 9, 10, 9, 8, 9, 8, 7, 6, 5, 6, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 5, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 6, 7, 6, 5, 6, 5, 4, 5, 6, 7, 6, 7, 8, 7, 6
Offset: 1

Author

Benoit Cloitre, Nov 11 2021

Keywords

Comments

It is conjectured that a(n)=o(n).

Crossrefs

Cf. A001222.

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(PrimeOmega[k] + PrimeOmega[k + 1]), {k, 1, n}]; Array[a, 100] (* Amiram Eldar, Nov 11 2021 *)
  • PARI
    a(n)=sum(k=1,n,(-1)^bigomega(k)*(-1)^bigomega(k+1))

A347727 a(1)=2; then a(n) is the least integer > a(n-1) such that 2 is the largest element in the continued fraction for 1/a(1) + 1/a(2) + ... + 1/a(n).

Original entry on oeis.org

2, 6, 18, 102, 40936, 4252528, 7112715120
Offset: 1

Author

Benoit Cloitre, Sep 11 2021

Keywords

Comments

3.5*10^15 < a(8) <= 8778368652367133280. - Jon E. Schoenfield, Sep 12 2021

Examples

			contfrac(1/2 + 1/6 + 1/18 + 1/102 + 1/40936) = [0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2] and 1/2 + 1/6 + 1/18 + 1/102 + 1/40936 = sqrt(3) - 1.0000002354...
		

Crossrefs

Cf. A160390.

Programs

  • Mathematica
    a[1] = 2; a[n_] := a[n] = Module[{k = a[n - 1] + 1, s = Sum[1/a[k], {k, 1, n - 1}]}, While[Max[ContinuedFraction[s + 1/k]] != 2, k++]; k]; Array[a, 6] (* Amiram Eldar, Sep 11 2021 *)

Extensions

a(7) from Jon E. Schoenfield, Sep 11 2021