A161409 Number of reduced words of length n in the Weyl group E_6 on 6 generators and order 51840.
1, 6, 20, 50, 105, 195, 329, 514, 754, 1048, 1389, 1765, 2159, 2549, 2911, 3222, 3461, 3611, 3662, 3611, 3461, 3222, 2911, 2549, 2159, 1765, 1389, 1048, 754, 514, 329, 195, 105, 50, 20, 6, 1
Offset: 0
Examples
Coxeter matrix: . [1 2 3 2 2 2] . [2 1 2 3 2 2] . [3 2 1 3 2 2] . [2 3 3 1 3 2] . [2 2 2 3 1 3] . [2 2 2 2 3 1]
References
- N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche V.)
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
Programs
-
Magma
G := CoxeterGroup(GrpFPCox, "E6"); f := GrowthFunction(G); Coefficients(PolynomialRing(IntegerRing())!f); // Corrected by Klaus Brockhaus, Feb 12 2010
-
Mathematica
CoefficientList[Series[((1-x^2) (1-x^5) (1-x^6) (1-x^8) (1-x^9) (1-x^12))/(1-x)^6,{x,0,40}],x] (* Harvey P. Dale, Aug 17 2011 *)
Formula
G.f.: f(2)f(5)f(6)f(8)f(9)f(12)/f(1)^6 where f(k) = 1-x^k.
Comments