A358342 Lesser of twin primes p such that sigma((p-1)/2) + tau((p-1)/2) is a prime.
3, 5, 17, 65537, 1927561217, 6015902625062501, 12370388895062501, 835920078368222501, 6448645485213008897, 50973659693056000001, 54332889713542767617, 64304984013657011717, 112112769248058062501, 147337258721536000001
Offset: 1
Examples
17 and 19 are twin primes; sigma((17-1)/2) + tau((17-1)/2) = sigma(8) + tau(8) = 15 + 4 = 19; 19 is prime, so 17 is in the sequence.
Crossrefs
Programs
-
Magma
[n: n in [3..10^7] | IsPrime(n) and IsPrime(n+2) and IsPrime(&+Divisors((n-1) div 2) + #Divisors((n-1) div 2))]
-
Mathematica
Join[{3}, Select[4*Range[25000]^2 + 1, PrimeQ[#] && PrimeQ[# + 2] && PrimeQ[DivisorSigma[1, (# - 1)/2] + DivisorSigma[0, (# - 1)/2]] &]] (* or *) A272061 = Cases[Import["https://oeis.org/A272061/b272061.txt", "Table"], {, }][[;; , 2]]; Select[A272061, PrimeQ[# + 2] &] (* Amiram Eldar, Jan 05 2023 *)
-
PARI
isok(p) = if (isprime(p) && isprime(p+2), my(f=factor((p-1)/2)); isprime(sigma(f)+numdiv(f))); \\ Michel Marcus, Nov 23 2022
Comments