cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jaroslav Krizek

Jaroslav Krizek's wiki page.

Jaroslav Krizek has authored 1701 sequences. Here are the ten most recent ones:

A358342 Lesser of twin primes p such that sigma((p-1)/2) + tau((p-1)/2) is a prime.

Original entry on oeis.org

3, 5, 17, 65537, 1927561217, 6015902625062501, 12370388895062501, 835920078368222501, 6448645485213008897, 50973659693056000001, 54332889713542767617, 64304984013657011717, 112112769248058062501, 147337258721536000001
Offset: 1

Author

Jaroslav Krizek, Nov 10 2022

Keywords

Comments

Lesser of twin primes p such that A000203((p-1)/2) + A000005((p-1)/2) is a prime q.
The first 4 terms are Fermat primes from A019434.
Corresponding values of primes q: 2, 5, 19, 65551, 2248681529, ...
Subsequence of A272060 and A272061.
Lesser of twin primes of the form 2*m+1 with m a term of A064205.
There are no other terms <= 10^14.
All the terms above 3 are in A145824. - Amiram Eldar, Jan 05 2023

Examples

			17 and 19 are twin primes; sigma((17-1)/2) + tau((17-1)/2) = sigma(8) + tau(8) = 15 + 4 = 19; 19 is prime, so 17 is in the sequence.
		

Crossrefs

Intersection of A001359 and A272061.
Cf. A000005 (tau), A000203 (sigma), A019434, A064205, A145824, A272060.

Programs

  • Magma
    [n: n in [3..10^7] | IsPrime(n) and IsPrime(n+2) and IsPrime(&+Divisors((n-1) div 2) + #Divisors((n-1) div 2))]
    
  • Mathematica
    Join[{3}, Select[4*Range[25000]^2 + 1, PrimeQ[#] && PrimeQ[# + 2] && PrimeQ[DivisorSigma[1, (# - 1)/2] + DivisorSigma[0, (# - 1)/2]] &]]
    (* or *)
    A272061 = Cases[Import["https://oeis.org/A272061/b272061.txt", "Table"], {, }][[;; , 2]]; Select[A272061, PrimeQ[# + 2] &] (* Amiram Eldar, Jan 05 2023 *)
  • PARI
    isok(p) = if (isprime(p) && isprime(p+2), my(f=factor((p-1)/2)); isprime(sigma(f)+numdiv(f))); \\ Michel Marcus, Nov 23 2022

A354073 Multiply-perfect numbers that are the sum of the divisors of some number.

Original entry on oeis.org

1, 6, 28, 120, 496, 672, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608, 518666803200
Offset: 1

Author

Jaroslav Krizek, May 16 2022

Keywords

Comments

Conjecture: 8128 is only multiply-perfect number that is not in this sequence.
The distinct values of A000203(A066961(n)).

Examples

			The multiply-perfect number 28 is in the sequence because 28 = sigma(12).
		

Crossrefs

Intersection of A007691 and A002191.

Programs

  • Magma
    Set(Sort([&+Divisors(m): m in [1..10^7] | IsIntegral(&+Divisors(&+Divisors(m)) / &+Divisors(m))]))

Extensions

a(18)-a(27) from Amiram Eldar, May 12 2024

A354072 Perfect numbers that are the sum of the divisors of some number.

Original entry on oeis.org

6, 28, 496, 33550336, 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176, 191561942608236107294793378084303638130997321548169216, 13164036458569648337239753460458722910223472318386943117783728128
Offset: 1

Author

Jaroslav Krizek, May 16 2022

Keywords

Comments

The distinct values of A000203(A146542(n)).
Conjecture: 8128 is the only perfect number that is not in this sequence.

Examples

			The perfect number 28 is in the sequence because 28 = sigma(12).
sigma(727145809044307968) = sigma(1152771972099211264) = 2305843008139952128.
		

Crossrefs

Intersection of A000396 and A002191.

Programs

  • Magma
    Set(Sort([&+Divisors(m): m in [1..10^7] | &+Divisors(&+Divisors(m)) eq 2 * &+Divisors(m)]))

Extensions

a(8)-a(10) from Amiram Eldar, May 12 2024

A354074 Factorials that are the sum of the divisors of some m.

Original entry on oeis.org

1, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000
Offset: 1

Author

Jaroslav Krizek, May 16 2022

Keywords

Comments

Sequence of different values of A000203(A245015(n)).
Conjecture: number 2 is the only factorial that is not in this sequence.

Examples

			Number 24 is in the sequence because sigma(14) = sigma(15) = sigma(23) = 24.
		

Crossrefs

Extensions

More terms from Jinyuan Wang, May 17 2022

A353034 Numbers m such that tau(m) = 2 * tau(m + 1) and simultaneously sigma(m) = 2 * sigma(m + 1), where tau(k) = A000005(k) and sigma(k) = A000203(k).

Original entry on oeis.org

20118, 20712, 79338, 103410, 203898, 267630, 570342, 907710, 1093026, 1228062, 1263918, 1663752, 2322760, 3268782, 3468486, 3527250, 5483418, 6277038, 6500442, 7637980, 9181578, 9297078, 17708178, 18638646, 25274946, 25364526, 25768302, 25909254, 31118664
Offset: 1

Author

Jaroslav Krizek, Apr 18 2022

Keywords

Comments

Corresponding values of tau(m): 16, 16, 16, 32, 16, 32, 16, 32, 16, 32, 16, 32, 32, ...
Corresponding values of sigma(m): 46080, 51840, 181440, 276480, 432000, 701568, 1200960, 2211840, ...

Examples

			tau(20118) = 16 = 2 * tau(20119) = 2 * 8, sigma(20118) = 46080 = 2 * sigma(20119) = 2 * 23040.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A054004, A347603, A353033.
Subsequence of A163193.

Programs

  • Magma
    [m: m in [2..10^6] | #Divisors(m) eq 2 * #Divisors(m + 1) and &+Divisors(m) eq 2 * &+Divisors(m + 1)]

A353033 Numbers m such that tau(m) = 2 * tau(m - 1) and simultaneously sigma(m) = 2 * sigma(m - 1), where tau(k) = A000005(k) and sigma(k) = A000203(k).

Original entry on oeis.org

6, 47796, 111684, 123498, 224562, 228378, 384858, 773016, 1096824, 1174542, 2351240, 2529414, 3320472, 3332616, 3650376, 4605096, 4838838, 4978476, 5014842, 5788662, 6023928, 6302724, 7658024, 8298978, 9287240, 9967974, 10950024, 12677496, 14036694, 14120360, 14927990
Offset: 1

Author

Jaroslav Krizek, Apr 18 2022

Keywords

Comments

Corresponding values of tau(m): 4, 24, 24, 16, 16, 16, 16, 32, 32, 16, 32, 32, 32, ...
Corresponding values of sigma(m): 12, 127680, 268128, 274560, 483840, 483840, 855360, 1996800, 2862720, 2472960, ...

Examples

			tau(6) = 4 = 2 * tau(5) = 2 * 2, sigma(6) = 12 = 2 * sigma(5) = 2 * 6.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A054004, A347603, A353034.

Programs

  • Magma
    [m: m in [2..10^6] | #Divisors(m) eq 2 * #Divisors(m - 1) and &+Divisors(m) eq 2 * &+Divisors(m - 1)]

A353032 a(n) is the smallest number m with n divisors such that m+1 has n-1 divisors, or 0 if no such number exists.

Original entry on oeis.org

0, 0, 4, 8, 81, 0, 0, 0, 441, 6723, 0, 0, 0, 0, 767495140624, 2024, 665416609183179841, 0, 0, 0, 2050624, 263168, 0, 0, 670801950625, 0, 10871232294189453124, 532899, 0, 0, 0, 0, 67634176, 0, 55471075527984793933106579132930662929175947116953798971172816083061185149078369140624
Offset: 1

Author

Jaroslav Krizek, Apr 18 2022

Keywords

Comments

For n > 33, a(64) = 6890624 is the only positive term <= 10^8.
There is no number m <= 10^10 that is the first start of run of 3 consecutive integers m, m+1 and m+2 with triplet [tau(m), tau(m+1), tau(m+2)] = [tau(m), tau(m) - 1, tau(m) - 2].
If a(11) > 0 then a(11) > 10^100. - Charles R Greathouse IV, Apr 20 2022
a(36) = 1626347583, a(40) = 1173953168, a(49) = 304006671424, a(65) = 25221297570561, a(81) = 15579533124, a(96) = 68195356770303, a(100) = 1698353697680, a(136) = 28528257204224, a(256) = 334435516415. - Jon E. Schoenfield, Apr 24 2022
From Jon E. Schoenfield, May 01 2022: (Start)
a(35) is the smallest m such that m = 16*p^6 = q^16*r - 1 where p, q, and r are odd primes; a(35) <= 16*123024356097427^6 (an 86-digit number).
a(37) = a(38) = 0;
a(39) <= 1134572901070399771884918212890624;
a(41) <= 350847983^40 (a 342-digit number). (End)

Examples

			For n = 5; a(5) = 81 because 81 is the smallest number m such that tau(m) = tau(81) = 5 and tau(82) = tau(m) - 1 = 4.
		

Crossrefs

Programs

  • Magma
    Ax:=func; [Ax(n): n in [1..5]]

Extensions

a(6)-a(8) from Jon E. Schoenfield, Apr 20 2022
a(9)-a(10), a(16), a(21)-a(22), a(28), a(33) from Jaroslav Krizek, Apr 20 2022
Remaining terms through a(34) from Jon E. Schoenfield, Apr 30 2022
a(35) from Jinyuan Wang, May 21 2022

A351890 Primes p such that tau(p - 1) - 1 = tau(p - 2) = tau(p - 3), where tau(k) is the number of divisors of k (A000005).

Original entry on oeis.org

5, 17, 65537, 9632244737, 20892967937, 127831991297, 149255504897, 159667373057, 351108391937, 542497063937, 1650957730817, 2270398022657, 2322380932097, 2747956028417, 2888694547457, 3516735087617, 6029264167937, 6122338640897, 6705696695297, 11125266727937
Offset: 1

Author

Jaroslav Krizek, Mar 03 2022

Keywords

Comments

Corresponding values of tau(a(n)-1): 3, 5, 17, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, ...
Corresponding values of tau(a(n)-2) = tau(a(n)-3): 2, 4, 16, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, ...
Quadruples of [tau(a(n)-3), tau(a(n)-2), tau(a(n)-1), tau(a(n))]: [2, 2, 3, 2], [4, 4, 5, 2], [16, 16, 17, 2], [32, 32, 33, 2], [32, 32, 33, 2], [32, 32, 33, 2], [32, 32, 33, 2], [32, 32, 33, 2], [32, 32, 33, 2], ...
Quadruple [32, 32, 33, 2] holds for all 128 terms 65537 < a(n) < 10^15.
Number p-1 is a perfect square as its number of divisors is odd.
The first 3 terms are Fermat primes from A019434.
Term 103565955613697 is the smallest primes p such that tau(p - 1) - 1 = tau(p - 2) = tau(p - 3) = tau(p - 4).

Examples

			Quadruple of [tau(65534), tau(65535), tau(65536), tau(65537)]: [16, 16, 17, 2].
		

Crossrefs

Subsequence of A347078.
Cf. A000005 (tau), A019434.

Programs

  • Magma
    [m: m in [4..10^6] | IsPrime(m) and #Divisors(m - 1) eq #Divisors(m - 2) + 1 and #Divisors(m - 2) eq #Divisors(m - 3)];

A351866 Numbers m such that sigma(m) = tau(m)! where sigma(k) = A000203(k) and tau(k) = A000005(k).

Original entry on oeis.org

1, 14, 15, 20154, 21496, 22390, 25978, 26314, 26386, 26439, 27687, 28041, 28671, 28911, 29365, 29397, 29559, 29607, 31135, 32263, 32335, 32665, 32669, 32785, 33383, 33901, 34177, 34279, 34903, 35167, 35629, 35867, 36049, 36271, 36613, 36859, 205286388, 239500772
Offset: 1

Author

Jaroslav Krizek, Feb 22 2022

Keywords

Comments

Corresponding values of sigma(m): 1, 24, 24, 40320, 40320, 40320, 40320, 40320, 40320, 40320, 40320, 40320, ...
Corresponding values of tau(m): 1, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, ...

Examples

			sigma(14) = 24 = tau(14)! = 4!.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A351865.
Subsequence of A245015.

Programs

  • Magma
    [m: m in [1..5*10^6] | &+Divisors(m) eq Factorial(#Divisors(m))];
    
  • Mathematica
    Select[Range[40000], DivisorSigma[1, #] == DivisorSigma[0, #]! &] (* Amiram Eldar, Feb 22 2022 *)
  • PARI
    isok(m) = my(f=factor(m)); sigma(f) == numdiv(f)!; \\ Michel Marcus, Feb 23 2022

Extensions

a(37)-a(38) from Amiram Eldar, Feb 22 2022

A350936 a(n) is the smallest number m such that tau(m) = n*tau(m-1) = n*tau(m+1) or 0 if no such m exists, where tau(k) = A000005(k).

Original entry on oeis.org

34, 6, 12, 30, 816, 60, 192, 270, 180, 240, 56320, 420, 233472, 2112, 1620, 1320, 2162688, 2340, 786432, 3120, 4800, 15360, 62914560, 3360, 172368, 724992, 6300, 29760, 24964497408, 12240, 35433480192, 7560, 599040, 15138816, 81648, 21600, 7215545057280
Offset: 1

Author

Jaroslav Krizek, Jan 25 2022

Keywords

Comments

Corresponding values of tau(a(n)): 4, 4, 6, 8, 20, 12, 14, 16, 18, 20, 44, 24, 52, 28, 30, 32, 68, 36, 38, 40, 42, 44, 92, 48, 100, 52, 54, 56, 116, 60, 124, 64, 132, 136, 70, 72, 296, ...
Triples of [tau(a(n) - 1), tau(a(n)), tau(a(n) + 1)] = [tau(a(n)) / n, tau(a(n)), tau(a(n)) / n]: [4, 4, 4], [2, 4, 2], [2, 6, 2], [2, 8, 2], [4, 20, 4], [2, 12, 2], [2, 14, 2], [2, 16, 2], [2, 18, 2], [2, 20, 2], [4, 44, 4], ...

Examples

			a(3) = 12 because 12 is the smallest number m such that tau(m) = 3 * tau(m-1) = 3 * tau(m+1); tau(12) = 3 * tau(11) = 3 * tau(13) = 3 * 2 = 6.
		

Crossrefs

Programs

  • Magma
    Ax:=func; [Ax(n): n in [1..16]]

Extensions

a(23)-a(37) from Jon E. Schoenfield, Jan 25 2022