cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jinyuan Wang

Jinyuan Wang's wiki page.

Jinyuan Wang has authored 92 sequences. Here are the ten most recent ones:

A386276 Numbers k such that the sequence defined by f(1) = k and f(x+1) = the sum of the three largest proper divisors of f(x), consists entirely of numbers having at least three proper divisors.

Original entry on oeis.org

6, 18, 42, 54, 66, 72, 78, 102, 114, 126, 138, 162, 174, 186, 198, 216, 222, 234, 246, 258, 282, 294, 306, 318, 342, 354, 366, 378, 402, 414, 426, 438, 462, 474, 486, 498, 504, 522, 534, 546, 558, 582, 594, 606, 618, 642, 648, 654, 666, 678, 702, 714, 726, 738
Offset: 1

Author

Jinyuan Wang, Jul 17 2025

Keywords

Comments

Numbers k of the form 6*i*12^j, where gcd(i, 10) = 1 and j >= 0.

Crossrefs

Cf. A080257.

Programs

  • Mathematica
    is[k_]:=Module[{v},v=IntegerExponent[k,2]; OddQ[v]&&Mod[k,5]!=0&&2*IntegerExponent[k,3]>v] Select[Range[1,1000],is] (* Vincenzo Librandi, Jul 22 2025 *)
  • PARI
    is(k) = my(v=valuation(k, 2)); v%2 && k%5 && 2*valuation(k, 3)>v;

Formula

a(n) = 55*n/4 + O(log n). - Charles R Greathouse IV, Aug 18 2025

A385290 Indices of records in A378865.

Original entry on oeis.org

1, 12, 24, 49, 101, 102, 497, 498, 499, 501, 1001, 1002, 2864, 4999, 5001, 10001, 10002, 10624, 12864, 18624, 27648, 123648, 249856, 442368, 786432, 1259874, 2159784, 8249175, 8759124, 10236587, 10236758, 10237649, 10239674, 10239786, 10268473, 10427539, 10476523
Offset: 1

Author

Jinyuan Wang, Jun 24 2025

Keywords

Crossrefs

A384851 Decimal expansion of minimal radius of a circle that contains 14 non-overlapping unit disks.

Original entry on oeis.org

4, 3, 2, 8, 4, 2, 8, 5, 5, 4, 8, 6, 0, 8, 3, 6, 6, 8, 1, 4, 0, 3, 9, 0, 9, 3, 6, 7, 4, 7, 8, 1, 8, 1, 0, 9, 1, 6, 0, 8, 4, 9, 5, 7, 2, 9, 6, 5, 8, 6, 7, 5, 7, 0, 1, 2, 4, 5, 7, 5, 4, 8, 5, 5, 2, 2, 1, 1, 3, 3, 7, 0, 4, 5, 4, 0, 2, 1, 3, 8, 6, 3, 1, 9, 7, 5, 7
Offset: 1

Author

Jinyuan Wang, Jun 10 2025

Keywords

Examples

			4.328428554860836681403909367478181...
		

Programs

  • PARI
    1+sqrt(1+polrootsreal(Pol([707281, -27270266, 472689975, -4930771548, 34449512067, -168736166642, 591369611109, -1498751280720, 2767422383674, -3746579404052, 3734397946902, -2743990597288, 1486108072662, -593729401364, 175537055738, -38557290064, 6295485573, -759438450, 66647843, -4134492, 172311, -4346, 49]))[10])

A383143 Number of positive integers with a shortest addition-subtraction chain of length n.

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 16, 28, 49, 88, 156, 280, 499, 904, 1639, 2986, 5442, 9936, 18134
Offset: 0

Author

Jinyuan Wang, Apr 17 2025

Keywords

Examples

			a(6) = 16 because the number of occurrences of 6 in A128998 is 16. These numbers are 19, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 40, 48, 64.
		

Crossrefs

Formula

a(n) >= A003065(n).

A383142 Smallest positive integer with shortest addition-subtraction chain of length n.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 19, 29, 53, 87, 151, 267, 461, 811, 1383, 2357, 4277, 7499, 14003, 25931, 44269, 87773, 152947, 271563
Offset: 0

Author

Jinyuan Wang, Apr 17 2025

Keywords

Examples

			a(8) = 53 because 53 is the smallest positive integer k such that A128998(k) = 8. An example of a shortest addition-subtraction chain for 53 is (1 2 3 4 7 14 25 28 53). a(8) > A003064(8) because an optimal chain for A003064(8) = 47 has length 7: (1 2 3 6 12 24 23 47).
		

Crossrefs

Formula

a(n) >= A003064(n).

A381229 a(n) is the number of distinct positive integers that can be obtained by starting with n, and optionally applying the operations square root, floor, and ceiling, in any order.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 4, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 7, 7, 7, 7, 7, 7
Offset: 1

Author

N. J. A. Sloane and Jinyuan Wang, Feb 25 2025

Keywords

Examples

			For n = 15, sqrt(15) = 3.872..., floor and ceiling give 3 and 4. Sqrt(3) = 1.732..., and floor and ceiling give 1 and 2. 4 gives nothing new. In all, we get a(15) = 5 different numbers: 15, 3, 4, 1, 2.
		

Crossrefs

Programs

  • PARI
    f(n) = my(t); if(n<4, [1..n], t=sqrtint(n); if(issquare(n), concat(f(t), n), Set(concat([f(t), f(t+1), [n]]))));
    a(n) = #f(n);

A381026 Primitive solutions k to the Diophantine equation k^7 = Sum_{i=1..7} y_i^7 with y_i > 0.

Original entry on oeis.org

568, 626
Offset: 1

Author

Jinyuan Wang, Feb 12 2025

Keywords

Examples

			568^7 = 127^7 + 258^7 + 266^7 + 413^7 + 430^7 + 439^7 + 525^7.
626^7 = 91^7 + 148^7 + 158^7 + 255^7 + 258^7 + 309^7 + 625^7.
		

Crossrefs

Cf. A380716.

A380716 Primitive solutions k to the Diophantine equation k^7 = Sum_{i=1..8} y_i^7 with y_i > 0.

Original entry on oeis.org

102, 377, 430, 454
Offset: 1

Author

Jinyuan Wang, Jan 30 2025

Keywords

Examples

			102^7 = 12^7 + 35^7 + 53^7 + 58^7 + 64^7 + 83^7 + 85^7 + 90^7.
377^7 = 5^7 + 23^7 + 47^7 + 97^7 + 108^7 + 179^7 + 315^7 + 359^7.
430^7 = 10^7 + 105^7 + 105^7 + 113^7 + 160^7 + 256^7 + 373^7 + 400^7.
454^7 = 50^7 + 52^7 + 65^7 + 252^7 + 266^7 + 312^7 + 319^7 + 440^7.
		

Crossrefs

Cf. A381026.

Extensions

a(4) from Jinyuan Wang, Feb 12 2025

A380150 a(n) is the least k such that there exists a number 1 <= m <= k-1 and exactly n different pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2.

Original entry on oeis.org

2, 35, 385, 1872, 5670, 30030
Offset: 0

Author

Jinyuan Wang and Jianing Song, Jan 13 2025

Keywords

Comments

a(n) is also the least k such that there exists a number 1 <= m <= k-1 and at least n different pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2: suppose on the contrary that the latter number is k' < a(n), then 1/x^2 - 1/y^2 = 1/m^2 - 1/k'^2 for some 1 <= m <= k'-1 and exactly n' > n pairs (x_1,y_1), ..., (x_{n'},y_{n'}) with 1 <= y_1 < ... < y_{n'} <= k'-1, so 1/x^2 - 1/y^2 = 1/(x_{n+1})^2 - 1/(y_{n+1})^2 has exactly n solutions (x_1,y_1), ..., (x_n,y_n) with 1 <= x < y <= y_{n+1}-1, which implies that a(n) <= y_{n+1} <= y_{n'} <= k'-1, a contradiction.
For a similar reason, this sequence is strictly increasing: if 1/x^2 - 1/y^2 = 1/m^2 - 1/a(n)^2 for some 1 <= m <= a(n)-1 and exactly n pairs (x_1,y_1), ... (x_n,y_n) with 1 <= y_1 < ... < y_n <= a(n)-1, then 1/x^2 - 1/y^2 = 1/(x_n)^2 - 1/(y_n)^2 has exactly n-1 solutions (x_1,y_1), ..., (x_{n-1},y_{n-1}) with 1 <= x < y <= y_n-1, so a(n-1) <= y_n.
a(6) <= 152152, a(7) <= 318240, a(8) <= 445536, a(9) <= 1191190 (see the Mathematics Stack Exchange link).

Examples

			The smallest k such that there exists a number 1 <= m <= k-1 and exactly three different pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2 is k = 1872: we have 1/300^2 - 1/325^2 = 1/468^2 - 1/585^2 = 1/624^2 - 1/1040^2 = 1/720^2 - 1/1872^2. See the Mathematics Stack Exchange link for more examples.
		

Crossrefs

Programs

  • PARI
    f(k) = my(v=List([]), m2); for(y=1, k-1, for(x=1, y-1, m2=1/(1/x^2-1/y^2+1/k^2); if(m2==m2\1 && issquare(m2), listput(v, m2)))); if(#v, vecmax(vector(#v, i, sum(j=1, #v, v[i]==v[j]))), 0); \\ Gives the maximum number of pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2, where m runs through 1..k-1
    lista(nn) = my(k=1); for(n=0, nn, until(f(k)==n, k++); print1(k, ", "));

A363875 Numbers k such that there is no odd number whose aliquot sequence contains k.

Original entry on oeis.org

2, 28, 52, 88, 96, 120, 124, 146, 162, 188, 206, 208, 210, 216, 238, 246, 248, 250, 262, 268, 276, 288, 290, 292, 298, 304, 306, 322, 324, 326, 336, 342, 362, 372, 388, 396, 406, 408, 412, 426, 428, 430, 438, 448, 452, 472, 474, 478, 486, 494, 498, 508, 516
Offset: 1

Author

Jinyuan Wang, Jun 25 2023

Keywords

Comments

k is in sequence iff k can never be reached when iterating the map x -> A001065(x) starting with any odd number m.
Assuming the stronger version of Goldbach conjecture, iff k is in the sequence, there are infinitely many odd numbers whose aliquot sequence contain k.
Supersequence of A005114 (except 5), A283152, A284147, A284156, A284187, ..., and untouchable perfect numbers (28, 137438691328, ...), untouchable amicable numbers (A238382), untouchable sociable numbers.