A386276 Numbers k such that the sequence defined by f(1) = k and f(x+1) = the sum of the three largest proper divisors of f(x), consists entirely of numbers having at least three proper divisors.
6, 18, 42, 54, 66, 72, 78, 102, 114, 126, 138, 162, 174, 186, 198, 216, 222, 234, 246, 258, 282, 294, 306, 318, 342, 354, 366, 378, 402, 414, 426, 438, 462, 474, 486, 498, 504, 522, 534, 546, 558, 582, 594, 606, 618, 642, 648, 654, 666, 678, 702, 714, 726, 738
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..3709
- Art of Problem Solving, 2025 IMO Problems/Problem 4
Crossrefs
Cf. A080257.
Programs
-
Mathematica
is[k_]:=Module[{v},v=IntegerExponent[k,2]; OddQ[v]&&Mod[k,5]!=0&&2*IntegerExponent[k,3]>v] Select[Range[1,1000],is] (* Vincenzo Librandi, Jul 22 2025 *)
-
PARI
is(k) = my(v=valuation(k, 2)); v%2 && k%5 && 2*valuation(k, 3)>v;
Formula
a(n) = 55*n/4 + O(log n). - Charles R Greathouse IV, Aug 18 2025
Comments