A384968 Triangle read by rows: T(n,k) is the number of proper vertex colorings of the n-complete bipartite graph using exactly k interchangeable colors, 2 <= k <= 2*n.
1, 1, 2, 1, 1, 6, 11, 6, 1, 1, 14, 61, 86, 50, 12, 1, 1, 30, 275, 770, 927, 530, 150, 20, 1, 1, 62, 1141, 5710, 12160, 12632, 6987, 2130, 355, 30, 1, 1, 126, 4571, 38626, 134981, 228382, 209428, 110768, 34902, 6580, 721, 42, 1, 1, 254, 18061, 248766, 1367310, 3553564, 4989621, 4093126, 2061782, 655788, 132958, 16996, 1316, 56, 1
Offset: 1
Examples
Triangle begins (n >= 1, k >= 2): 1; 1, 2, 1; 1, 6, 11, 6, 1; 1, 14, 61, 86, 50, 12, 1; 1, 30, 275, 770, 927, 530, 150, 20, 1; 1, 62, 1141, 5710, 12160, 12632, 6987, 2130, 355, 30, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..2500 (rows 1..50)
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
- Eric Weisstein's World of Mathematics, Vertex Coloring.
Crossrefs
Programs
-
PARI
T(n,k) = sum(j=1, k-1, stirling(n,j,2)*stirling(n,k-j,2)) for(n=1, 7, print(vector(2*n-1,k,T(n,k+1))))
Formula
T(n,k) = Sum_{j=1..k-1} Stirling2(n,j)*Stirling2(n,k-j).
T(n,k) = A274310(2*n-1, k-1).
Comments