cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A277741 Array read by antidiagonals: A(n,k) is the number of unsensed planar maps with n vertices and k faces, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 13, 20, 13, 3, 6, 35, 83, 83, 35, 6, 12, 104, 340, 504, 340, 104, 12, 27, 315, 1401, 2843, 2843, 1401, 315, 27, 65, 1021, 5809, 15578, 21420, 15578, 5809, 1021, 65, 175, 3407, 24299, 82546, 149007, 149007, 82546, 24299, 3407, 175
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2016

Keywords

Comments

A(n,k) is also the number of multiquadrangulations of the sphere with n stable equilibria and k unstable equilibria.
From Andrew Howroyd, Jan 13 2025: (Start)
The planar maps considered are connected and may contain loops and parallel edges.
The number of edges is n + k - 2. (End)

Examples

			The array begins:
   1,    1,    1,     2,     3,     6,   12,   27, 65, ...
   1,    2,    5,    13,    35,   104,  315, 1021, ...
   1,    5,   20,    83,   340,  1401, 5809, ...
   2,   13,   83,   504,  2843, 15578, ...
   3,   35,  340,  2843, 21420, ...
   6,  104, 1401, 15578, ...
  12,  315, 5809, ...
  27, 1021, ...
  65, ...
  ...
As a triangle, rows give the number of edges (first row is 0 edges):
   1;
   1,    1;
   1,    2,    1;
   2,    5,    5,     2;
   3,   13,   20,    13,     3;
   6,   35,   83,    83,    35,    6;
  12,  104,  340,   504,   340,   104,   12;
  27,  315, 1401,  2843,  2843,  1401,  315,   27;
  65, 1021, 5809, 15578, 21420, 15578, 5809, 1021, 65;
  ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, chapter 5.

Crossrefs

Antidiagonal sums are A006385.
Rows 1..2 (equally, columns 1..2) are A006082, A380239.
Cf. A269920 (rooted), A379430 (sensed), A379431 (achiral), A379432 (2-connected), A384963 (simple).

Formula

A(n,k) = A(k,n).
A(n,k) = (A379430(n,k) + A379431(n,k))/2. - Andrew Howroyd, Jan 14 2025

Extensions

Missing terms inserted and definition edited by Andrew Howroyd, Jan 13 2025

A006395 Number of unsensed planar maps with n edges and without loops or parallel edges.

Original entry on oeis.org

1, 1, 1, 3, 5, 14, 42, 150, 624, 2947, 15079, 82607, 474030, 2816952, 17194524, 107226255
Offset: 0

Views

Author

Keywords

Comments

The planar maps considered here are connected. A planar map without loops or parallel edges is called simple.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A384850, antidiagonal sums of A384963.
Cf. A006385, A006391, A006394 (sensed), A022558 (rooted), A372892 (with n vertices).

Extensions

a(9)-a(12) from Sean A. Irvine, Mar 30 2017
a(0)=1 prepended by Andrew Howroyd, Jan 16 2025
a(13)-a(15) added by Andrew Howroyd, Jun 15 2025

A384964 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of connected simple planar graphs with n nodes and k faces up to orientation preserving isomorphisms, n >= 1, k=1..max(1,2*n-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 8, 6, 2, 1, 6, 29, 60, 73, 52, 25, 6, 2, 14, 113, 388, 768, 903, 728, 379, 136, 26, 6, 34, 444, 2303, 6584, 11782, 14321, 12113, 7298, 3048, 872, 147, 17, 95, 1763, 12650, 49806, 123547, 210314, 255884, 228807, 150929, 73428, 25536, 6142, 892, 73
Offset: 1

Views

Author

Andrew Howroyd, Jun 13 2025

Keywords

Comments

Equivalently, T(n,k) is the number of sensed simple planar maps with n vertices and k faces.
The number of edges is n+k-2.
Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 1..14 of this table.

Examples

			Triangle begins:
   1;
   1;
   1,   1,
   2,   2,    1,    1,
   3,   8,    8,    6,     2,     1,
   6,  29,   60,   73,    52,    25,     6,    2,
  14, 113,  388,  768,   903,   728,   379,  136,   26,   6,
  34, 444, 2303, 6584, 11782, 14321, 12113, 7298, 3048, 872, 147, 17;
  ...
		

Crossrefs

Row sums are A384965.
Antidiagonal sums are A006394.
Columns 1..2 are A002995, A384966.
Cf. A379430 (not necessarily simple), A342059 (2-connected), A239893 (3-connected), A384963 (unsensed).

A372892 Total number of unlabeled simple maps on the sphere with n vertices.

Original entry on oeis.org

1, 1, 2, 6, 25, 179, 2014, 31178, 580555, 12046072, 267836680, 6258809085, 151983244000, 3807081193879
Offset: 1

Views

Author

Eric W. Weisstein, May 19 2024

Keywords

Comments

Computed by Brendan McKay.
a(n) is the same as the total number of distinct spherical drawings of connected graphs with n vertices.

Crossrefs

Row sums of A384963, column sums of A384850.
Cf. A372853 (uniquely embeddable connected graphs).
Cf. A372854 (largest numbers of planar embeddings for connected graphs).
Cf. A006395 (with n edges), A384965 (sensed version).

Extensions

a(14) added by Andrew Howroyd, Jun 13 2025

A384850 Triangle read by rows: T(n,k) is the number of unsensed simple planar maps with n edges and k vertices, 1 <= k <= n+1.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 2, 3, 0, 0, 0, 1, 7, 6, 0, 0, 0, 1, 7, 22, 12, 0, 0, 0, 0, 5, 42, 76, 27, 0, 0, 0, 0, 2, 49, 237, 271, 65, 0, 0, 0, 0, 1, 35, 442, 1293, 1001, 175, 0, 0, 0, 0, 0, 18, 510, 3539, 6757, 3765, 490
Offset: 0

Views

Author

Andrew Howroyd, Jun 13 2025

Keywords

Comments

The planar maps considered here are connected.
The initial terms of this sequence can be computed using the tool "plantri", in particular the command "./plantri -u -v -c1 -p [n]" will compute values for a column.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 1, 2;
  0, 0, 0, 2, 3;
  0, 0, 0, 1, 7,  6;
  0, 0, 0, 1, 7, 22,  12;
  0, 0, 0, 0, 5, 42,  76,   27;
  0, 0, 0, 0, 2, 49, 237,  271,   65;
  0, 0, 0, 0, 1, 35, 442, 1293, 1001, 175;
  ...
		

Crossrefs

Row sums are A006395.
Column sums are A372892.
Main diagonal is A006082.
Subdiagonal is A384967.
Cf. A054923 (graphs), A277741 (not necessarily simple), A342060 (2-connected), A212438 (3-connected), A384963 (version by number of vertices then faces).

A384967 Number of unsensed simple planar maps with n vertices and 2 faces.

Original entry on oeis.org

0, 0, 1, 2, 7, 22, 76, 271, 1001, 3765, 14381, 55450, 214880, 835663, 3255652, 12698352, 49559793, 193513944, 755852101, 2953214386, 11541989533, 45123241746, 176465152051, 690340349398, 2701579878022, 10576116931462, 41418132927403, 162259989848094, 635899817853002, 2492993368347594
Offset: 1

Views

Author

Andrew Howroyd, Jun 15 2025

Keywords

Comments

In other words, a(n) is the number of embeddings on the sphere of connected simple unicyclic planar graphs with n nodes.

Crossrefs

Column 2 of A384963.
Also subdiagonal of A379430.
Cf. A001429, A006081 (cycle is loop), A380239 (not necessarily simple), A384966 (sensed version).

Programs

  • PARI
    G1(n)={my(g=(1-sqrt(1-4*x^2 + O(x^(n+2))))/(2*x^2)); ((1 + x/(1-x-x^2*g)^2)^2/(1 - x^2*g^2) - 1)/2 + 1/(1 - x*g) - 1 - x*(g^2/(1 - x*g)^2 + g) - x^2*(g^4/(1 - x*g)^4 + 3*g^2)/2}
    G2(n)={my(c(d)=(1-sqrt(1-4*x^d + O(x*x^(n+d))))/(2*x^d)); sum(k=1, n, my(m=1+k%2); -(log(2 - c(k)) + log(1 - x^k*c(m*k)^(2/m)))*eulerphi(k)/k, O(x*x^n)) - x*(c(1)^2 + c(2)) - x^2*(c(1)^4 + 3*c(2)^2)/2}
    seq(n)={Vec(G1(n)+G2(n), -n)/4}
Showing 1-6 of 6 results.