cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Eric W. Weisstein

Eric W. Weisstein's wiki page.

Eric W. Weisstein has authored 3672 sequences. Here are the ten most recent ones:

A387571 Number of matchings in the n-double cone graph.

Original entry on oeis.org

3, 21, 64, 217, 671, 2052, 6119, 18001, 52288, 150429, 429243, 1216516, 3427659, 9609357, 26821696, 74576737, 206650199, 570877956, 1572754223, 4322192329, 11851475008, 32430381861, 88576465779, 241511251972, 657457204371, 1787147867397, 4851349002304
Offset: 1

Author

Eric W. Weisstein, Sep 02 2025

Keywords

Comments

Sequence extended to a(1) using the formula/recurrence.

Programs

  • Mathematica
    Table[2 (-1)^(n + 1) + Fibonacci[2 n + 5] + ((5 - 3 Sqrt[5]) (3 - Sqrt[5])^n + (3 + Sqrt[5])^n (5 + 3 Sqrt[5])) n/(5 2^n) , {n, 0, 20}] // Expand
    seq = LinearRecurrence[{5, -5, -5, 5, -1}, {3, 21, 64, 217, 671, 2052}, 20]
    CoefficientList[Series[(3 + 6 x - 26 x^2 + 17 x^3 - 4 x^4)/((1 + x) (1 - 3 x + x^2)^2), {x, 0, 20}], x]

Formula

a(n) = 5*a(n-1)-5*a(n-2)-5*a(n-3)+5*a(n-4)-a(n-5).
G.f.: (x*(3+6*x-26*x^2+17*x^3-4*x^4))/((1+x)*(1-3*x+x^2)^2).

A387567 Number of matchings in the n-Lindgren-Sousselier graph

Original entry on oeis.org

332, 12210, 411402, 13182776, 408531656, 12362010796, 367445471844, 10771214079422, 312257159548526, 8970446710113232, 255757149683012884
Offset: 1

Author

Eric W. Weisstein, Sep 02 2025

Keywords

A387559 Number of matchings in the n-Cameron graph.

Original entry on oeis.org

328, 34656, 3663196, 387220788, 40931551142
Offset: 1

Author

Eric W. Weisstein, Sep 02 2025

Keywords

A387562 Number of matchings in the n-Goldberg graph.

Original entry on oeis.org

1129840, 120545586, 12557261488, 1316081686246, 137725531424688, 14418170976322658, 1509263068324892272, 157990123923123550134, 16538357794622981538672, 1731232768330908213858642, 181225115477746026026721456
Offset: 3

Author

Eric W. Weisstein, Sep 02 2025

Keywords

A387564 Number of matchings in the Dorogovtsev-Goltsev-Mendes graph

Original entry on oeis.org

4, 27, 3375, 1793613375
Offset: 1

Author

Eric W. Weisstein, Sep 02 2025

Keywords

A387566 Number of matchings in the n-Lucas cube graph.

Original entry on oeis.org

1, 3, 4, 33, 398, 46188, 123881086
Offset: 1

Author

Eric W. Weisstein, Sep 02 2025

Keywords

A387568 Number of matchings in the n-Pell graph.

Original entry on oeis.org

2, 10, 934, 15747098
Offset: 1

Author

Eric W. Weisstein, Sep 02 2025

Keywords

A387570 Number of matchings in the n-dipyramidal graph.

Original entry on oeis.org

2, 3, 9, 22, 51, 111, 234, 477, 951, 1858, 3573, 6777, 12706, 23583, 43389, 79214, 143631, 258843, 463914, 827337, 1468827, 2597018, 4574529, 8030037, 14050946, 24514011, 42651729, 74021062, 128157771, 221397543, 381680298, 656721237, 1127890911, 1933765618
Offset: 0

Author

Eric W. Weisstein, Sep 02 2025

Keywords

Comments

Sequence extended to n = 0 using formula/recurrence.

Programs

  • Mathematica
    Table[((n^2 + 5) LucasL[n] + 9 n Fibonacci[n])/5, {n, 0, 20}]
    LinearRecurrence[{3, 0, -5, 0, 3, 1}, {3, 9, 22, 51, 111, 234}, {0, 20}]
    CoefficientList[Series[(-2 + 3 x - 5 x^3 + 3 x^5)/(-1 + x + x^2)^3, {x, 0, 20}], x]

Formula

a(n) = (n^2 + 5)*LucasL(n) + 9*n*Fibonacci(n))/5.
a(n) = 3*a(n-1)-5*a(n-3)+3*a(n-5)+a(n-6).
G.f.: (-2+3*x-5*x^3+3*x^5)/(-1+x+x^2)^3.

A387561 Number of independent vertex sets in the n-Cameron graph.

Original entry on oeis.org

75, 2499, 83079, 2761659, 91800447, 3051539907, 101436268887
Offset: 1

Author

Eric W. Weisstein, Sep 02 2025

Keywords

A387563 Number of matchings in the n X n camel graph.

Original entry on oeis.org

1, 1, 1, 324, 300407, 2572822729, 18309814258048, 2175521892821642304
Offset: 1

Author

Eric W. Weisstein, Sep 02 2025

Keywords