cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Sean A. Irvine

Sean A. Irvine's wiki page.

Sean A. Irvine has authored 848 sequences. Here are the ten most recent ones:

A385247 a(n) is the number of ways to partition n X n X n cube into 6 noncongruent cuboids.

Original entry on oeis.org

0, 0, 1, 70, 846, 3508, 12960, 30064, 74164, 134745, 266396
Offset: 1

Author

Sean A. Irvine and Janaka Rodrigo, Jul 28 2025

Keywords

Comments

A386296 is the main sequence for this topic.
Alternatively a(n) is the number of distinct six-cuboid combinations filling an n X n X n cube.

Examples

			Let the elements x,y and z of the unordered triplet (x,y,z) be the dimensions of a cuboid of the set of distinct six-cuboid combinations. One of the sets of six distinct unordered triplets of a(4) representing a six-cuboid combinations filling 4 X 4 X 4 cube is,
{(3,4,4),(1,2,3),(1,2,2),(1,1,3),(1,1,2),(1,1,1)}.
		

Crossrefs

Column 6 of A386296.
Cf. A381847 (3 cuboids), A384311 (4 cuboids), A384479 (5 cuboids).

A385977 Length of the long leg of the triangles defined in A377725.

Original entry on oeis.org

4, 112, 3444, 114720, 3883684, 131852560, 4478648724, 152139554112, 5168250745924, 175568295786160, 5964153281301684, 202605640210401120, 6882627596048598244, 233806732521557580112, 7942546277531426709204, 269812766700017940393600, 9165691521502509968254084
Offset: 1

Author

Sean A. Irvine, Jul 13 2025

Keywords

Crossrefs

Formula

a(n) = 2 * A002315(n) * (A002315(n) + 1).

A385615 Star numbers corresponding to the point numbers in A385330.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 3, 4, 2, 4, 3, 4, 2, 3, 4, 5, 3, 4, 2, 5, 4, 5, 3, 5, 4, 2, 3, 5, 6, 4, 5, 6, 3, 4, 6, 2, 5, 6, 4, 5, 3, 6, 5, 4, 6, 7, 2, 3, 5, 7, 6, 4, 7, 5, 6, 3, 7, 4, 6, 2, 5, 7, 6, 4, 7, 5, 3, 6, 7, 8, 5, 4, 6, 7, 2, 8, 3, 5, 8, 7, 6, 4, 8, 7, 5, 6, 8
Offset: 1

Author

Keywords

Comments

See A385330 for the full definition of this sequence.

Crossrefs

Cf. A385330.

A385614 Numbers of the form x^x + y^y, 1 < x < y.

Original entry on oeis.org

31, 260, 283, 3129, 3152, 3381, 46660, 46683, 46912, 49781, 823547, 823570, 823799, 826668, 870199, 16777220, 16777243, 16777472, 16780341, 16823872, 17600759, 387420493, 387420516, 387420745, 387423614, 387467145, 388244032, 404197705, 10000000004
Offset: 1

Author

Sean A. Irvine, Jul 04 2025

Keywords

Comments

Terms are all combinations of 1 < x < y ordered by increasing y then increasing x, since the largest of one y is strictly less than the smallest of the next: (y-1)^(y-1) + y^y < 2^2 + (y+1)^(y+1) for y >= 3. - Kevin Ryde, Jul 06 2025

Examples

			31 is in the sequence because 31 = 2^2 + 3^3.
		

Crossrefs

Programs

  • PARI
    a(n) = my(r,s=sqrtint((n-1)<<1,&r), x=2 + if(r>1, y=3 + s-(rKevin Ryde, Jul 06 2025
    
  • Python
    from math import isqrt, comb
    def A385614(n):
        y = (m:=isqrt(k:=n<<1))+(k>m*(m+1))+2
        x = n-comb(y-2,2)+1
        return x**x+y**y # Chai Wah Wu, Jul 07 2025

Formula

a(n) = x^x + y^y where x=A131818(n+1) and y=A133196(n). - Kevin Ryde, Jul 06 2025

A385460 Consecutive internal states of the linear congruential pseudo-random number generator (1366*s + 150889) mod 714025 when started at 1.

Original entry on oeis.org

1, 152255, 349944, 491668, 585877, 36846, 500775, 173589, 217163, 475172, 187116, 130395, 478234, 85658, 59617, 188861, 371990, 617454, 329528, 450387, 604006, 524210, 54674, 576973, 12407, 676276, 709580, 505244, 566043, 76552, 473271, 446450, 224239, 144638
Offset: 1

Author

Sean A. Irvine, Jun 29 2025

Keywords

Comments

Periodic with period 714025.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(1366*a(n-1)+150889, 714025))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[1366*# + 150889, 714025] &, 1, 50]

Formula

a(n) = (1366*a(n-1) + 150889) mod 714025.

A385459 Consecutive internal states of the linear congruential pseudo-random number generator (3877*s + 29573) mod 139968 when started at 1.

Original entry on oeis.org

1, 33450, 104855, 85336, 132861, 49430, 53491, 121572, 91961, 63874, 65679, 65264, 135925, 31278, 82091, 9148, 84465, 115226, 122887, 11400, 137453, 76678, 18147, 121556, 29929, 30834, 40319, 2080, 115557, 6494, 12571, 58476, 132833, 80842, 65655, 112184
Offset: 1

Author

Sean A. Irvine, Jun 29 2025

Keywords

Comments

Periodic with period 139968.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(3877*a(n-1)+29573, 139968))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[3877*# + 29573, 139968] &, 1, 50]

Formula

a(n) = (3877*a(n-1) + 29573) mod 139968.

A385463 Consecutive internal states of the linear congruential pseudo-random number generator (7141*s + 54773) mod 259200 when started at 1.

Original entry on oeis.org

1, 61914, 246647, 97000, 149373, 119366, 197779, 13812, 190265, 10738, 11631, 167744, 151477, 110430, 149003, 69196, 148209, 101642, 120295, 92568, 122861, 13174, 40707, 180260, 104233, 219426, 111839, 101872, 207525, 144398, 103291, 231804, 115937, 76090
Offset: 1

Author

Sean A. Irvine, Jun 29 2025

Keywords

Comments

Periodic with period 259200.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(7141*a(n-1)+54773, 259200))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[7141*# + 54773, 259200] &, 1, 50]

Formula

a(n) = (7141*a(n-1) + 54773) mod 259200.

A385461 Consecutive internal states of the linear congruential pseudo-random number generator (8121*s + 28411) mod 134456 when started at 1.

Original entry on oeis.org

1, 36532, 94847, 116930, 88669, 97480, 121019, 84806, 54305, 23636, 107655, 61754, 11765, 108216, 46131, 63846, 59441, 51732, 103439, 109898, 125597, 18432, 65155, 67806, 83617, 79268, 122967, 38706, 1709, 58232, 48731, 68854, 123697, 50972, 116455, 130418
Offset: 1

Author

Sean A. Irvine, Jun 29 2025

Keywords

Comments

Periodic with period 134456.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(8121*a(n-1)+28411, 134456))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[8121*# + 28411, 134456] &, 1, 50]

Formula

a(n) = (8121*a(n-1) + 28411) mod 134456.

A385464 Consecutive internal states of the linear congruential pseudo-random number generator (9301*s + 49297) mod 233280 when started at 1.

Original entry on oeis.org

1, 58598, 127215, 79852, 222509, 178626, 29563, 210920, 164697, 179614, 121031, 182628, 160645, 50042, 96339, 69856, 95153, 3030, 4447, 120284, 233181, 61618, 222635, 184152, 105289, 32846, 186423, 232660, 114677, 103914, 74371, 98768, 33825, 194182, 82319
Offset: 1

Author

Sean A. Irvine, Jun 29 2025

Keywords

Comments

Periodic with period 233280.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(9301*a(n-1)+49297, 233280))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[9301*# + 49297, 233280] &, 1, 50]

Formula

a(n) = (9301*a(n-1) + 49297) mod 233280.

A385465 Consecutive internal states of the linear congruential pseudo-random number generator (4096*s + 150889) mod 714025 when started at 1.

Original entry on oeis.org

1, 154985, 201224, 379543, 326592, 502896, 50780, 364494, 92038, 133337, 70116, 307975, 648339, 288458, 677507, 518411, 51995, 342959, 423778, 150802, 204256, 660190, 276454, 62823, 424897, 450076, 49635, 672749, 308318, 625217, 546071, 531405, 437569, 230763
Offset: 1

Author

Sean A. Irvine, Jun 29 2025

Keywords

Comments

Periodic with period 714025.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(4096*a(n-1)+150889, 714025))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[4096*# + 150889, 714025] &, 1, 50]

Formula

a(n) = (4096*a(n-1) + 150889) mod 714025.