cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A006385 Number of unsensed planar maps with n edges.

Original entry on oeis.org

1, 2, 4, 14, 52, 248, 1416, 9172, 66366, 518868, 4301350, 37230364, 333058463, 3057319072, 28656583950, 273298352168, 2645186193457, 25931472185976, 257086490694917, 2574370590192556, 26010904915620261
Offset: 0

Views

Author

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges. - Andrew Howroyd, Jan 13 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Antidiagonal sums of A277741.
Column k=0 of A379439.
Cf. A000168 (rooted), A006384 (sensed), A006443 (achiral), A006403 (2-connected), A090376.
Cf. A006387 (genus 1), A214814 (genus 2), A214815 (genus 3), A214816.

Formula

a(n) = (A006384(n) + A006443(n))/2. - Andrew Howroyd, Jan 13 2025

Extensions

a(18)-a(19) added by Andrew Howroyd, Jan 13 2025
a(20) added by Andrew Howroyd, Jan 20 2025

A379430 Array read by antidiagonals: A(n,k) is the number of sensed planar maps with n vertices and k faces, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 14, 23, 14, 3, 6, 42, 108, 108, 42, 6, 14, 140, 501, 761, 501, 140, 14, 34, 473, 2264, 4744, 4744, 2264, 473, 34, 95, 1670, 10087, 27768, 38495, 27768, 10087, 1670, 95, 280, 5969, 44310, 153668, 279698, 279698, 153668, 44310, 5969, 280
Offset: 1

Views

Author

Andrew Howroyd, Jan 13 2025

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges.
The number of edges is n + k - 2.

Examples

			Array begins:
=========================================================
n\k |  1    2     3      4      5      6      7     8 ...
----+----------------------------------------------------
  1 |  1    1     1      2      3      6     14    34 ...
  2 |  1    2     5     14     42    140    473  1670 ...
  3 |  1    5    23    108    501   2264  10087 44310 ...
  4 |  2   14   108    761   4744  27768 153668 ...
  5 |  3   42   501   4744  38495 279698 ...
  6 |  6  140  2264  27768 279698 ...
  7 | 14  473 10087 153668 ...
  8 | 34 1670 44310 ...
   ...
As a triangle, rows give the number of edges (first row is 0 edges):
   1;
   1,    1;
   1,    2,     1;
   2,    5,     5,     2;
   3,   14,    23,    14,     3;
   6,   42,   108,   108,    42,     6;
  14,  140,   501,   761,   501,   140,    14;
  34,  473,  2264,  4744,  4744,  2264,   473,   34;
  95, 1670, 10087, 27768, 38495, 27768, 10087, 1670, 95;
  ...
		

Crossrefs

Antidiagonal sums are A006384.
Columns 1..2 are A002995, A380237.
Cf. A269920 (rooted), A277741 (unsensed), A379431 (achiral), A342061 (2-connected), A384964 (simple).

Formula

A(n,k) = A(k,n).

A384963 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of connected simple planar graphs with n nodes and k faces, n >= 1, k=1..max(1,2*n-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 7, 7, 5, 2, 1, 6, 22, 42, 49, 35, 18, 5, 2, 12, 76, 237, 442, 510, 412, 218, 84, 18, 5, 27, 271, 1293, 3539, 6205, 7482, 6318, 3833, 1623, 485, 88, 14, 65, 1001, 6757, 25842, 63254, 106985, 129782, 115988, 76582, 37421, 13111, 3228, 489, 50
Offset: 1

Views

Author

Andrew Howroyd, Jun 13 2025

Keywords

Comments

Equivalently, T(n,k) is the number of unsensed simple planar maps with n vertices and k faces.
The number of edges is n+k-2.
Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 1..14 of this table.

Examples

			Triangle begins:
   1;
   1;
   1,   1;
   2,   2,    1,    1,
   3,   7,    7,    5,    2,    1;
   6,  22,   42,   49,   35,   18,    5,    2;
  12,  76,  237,  442,  510,  412,  218,   84,   18,   5;
  27, 271, 1293, 3539, 6205, 7482, 6318, 3833, 1623, 485, 88, 14;
  ...
		

Crossrefs

Row sums are A372892.
Antidiagonal sums are A006395.
Columns 1..2 are A006082, A384967.
Cf. A277741 (not necessarily simple), A342060 (2-connected), A212438 (3-connected), A384850 (version by number of edges then vertices), A384964 (sensed version).

A380239 Number of unsensed planar maps with n vertices and 2 faces.

Original entry on oeis.org

1, 2, 5, 13, 35, 104, 315, 1021, 3407, 11814, 41893, 151688, 556432, 2063446, 7709381, 28977788, 109421539, 414759097, 1577080457, 6013019088, 22980514005, 88012484058, 337717418145, 1298113689274, 4997561829650, 19267942661664, 74386901833067, 287540841925770
Offset: 1

Views

Author

Andrew Howroyd, Jan 19 2025

Keywords

Comments

Also by duality the number of unsensed planar maps with n faces and 2 vertices.
The number of edges is n.

Crossrefs

Column 2 of A277741.
Cf. A380237 (sensed), A380238 (achiral).

Programs

  • PARI
    G1(n)={my(g=(1-sqrt(1-4*x^2 + O(x*x^n)))/(2*x^2)); ((1 + x/(1-x-x^2*g)^2)^2/(1 - x^2*g^2) - 1)/2 + 1/(1 - x*g) - 1}
    G2(n)={my(c(d)=(1-sqrt(1-4*x^d + O(x*x^(n+d))))/(2*x^d)); sum(k=1, n, my(m=1+k%2); -(log(2 - c(k)) + log(1 - x^k*c(m*k)^(2/m)))*eulerphi(k)/k, O(x*x^n))}
    seq(n)={Vec(G1(n)+G2(n))/4}

Formula

a(n) = (A380237(n) + A380238(n))/2.

A379431 Array read by antidiagonals: A(n,k) is the number of achiral planar maps with n vertices and k faces, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 12, 17, 12, 3, 6, 28, 58, 58, 28, 6, 10, 68, 179, 247, 179, 68, 10, 20, 157, 538, 942, 942, 538, 157, 20, 35, 372, 1531, 3388, 4345, 3388, 1531, 372, 35, 70, 845, 4288, 11424, 18316, 18316, 11424, 4288, 845, 70
Offset: 1

Views

Author

Andrew Howroyd, Jan 14 2025

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges.
The number of edges is n + k - 2.

Examples

			==================================================
n\k |  1   2    3     4     5     6     7    8 ...
----+---------------------------------------------
  1 |  1   1    1     2     3     6    10   20 ...
  2 |  1   2    5    12    28    68   157  372 ...
  3 |  1   5   17    58   179   538  1531 4288 ...
  4 |  2  12   58   247   942  3388 11424 ...
  5 |  3  28  179   942  4345 18316 ...
  6 |  6  68  538  3388 18316 ...
  7 | 10 157 1531 11424 ...
  8 | 20 372 4288 ...
  ...
As a triangle, rows give the number of edges (first row is 0 edges):
   1;
   1,   1;
   1,   2,    1;
   2,   5,    5,   2;
   3,  12,   17,   12,    3;
   6,  28,   58,   58,   28,    6;
  10,  68,  179,  247,  179,   68,   10;
  20, 157,  538,  942,  942,  538,  157,  20;
  35, 372, 1531, 3388, 4345, 3388, 1531, 372, 35;
  ...
		

Crossrefs

Antidiagonal sums are A006443.
Column 1 is A210736(n-1).
Cf. A269920 (rooted), A277741 (unsensed), A379430 (sensed).

Formula

A(n,k) = A(k,n).

A380616 Triangle read by rows: T(n,k) is the number of unsensed combinatorial maps with n edges and k vertices, 1 <= k <= n + 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 8, 5, 2, 17, 33, 30, 13, 3, 79, 198, 208, 118, 35, 6, 554, 1571, 1894, 1232, 472, 104, 12, 5283, 16431, 21440, 15545, 6879, 1914, 315, 27, 65346, 213831, 296952, 233027, 115134, 37311, 7881, 1021, 65, 966156, 3288821, 4799336, 4019360, 2163112, 787065, 196267, 32857, 3407, 175
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2025

Keywords

Comments

By duality, also the number of unsensed combinatorial maps with n edges and k faces.

Examples

			Triangle begins:
n\k |     1       2       3       4       5      6     7     8   9
----+--------------------------------------------------------------
  0 |     1;
  1 |     1,      1;
  2 |     2,      2,      1;
  3 |     5,      8,      5,      2;
  4 |    17,     33,     30,     13,      3;
  5 |    79,    198,    208,    118,     35,     6;
  6 |   554,   1571,   1894,   1232,    472,   104,   12;
  7 |  5283,  16431,  21440,  15545,   6879,  1914,  315,   27;
  8 | 65346, 213831, 296952, 233027, 115134, 37311, 7881, 1021, 65;
  ...
		

Crossrefs

Row sums are A214816.
Main diagonal is A006082(n+1).
Columns 1..3 are A054499, A380620, A380621.
Cf. A053979 (rooted), A277741 (planar), A380615 (sensed), A380617 (achiral).

Formula

T(n,k) = (A380615(n,k) + A380617(n,k))/2.

A384850 Triangle read by rows: T(n,k) is the number of unsensed simple planar maps with n edges and k vertices, 1 <= k <= n+1.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 2, 3, 0, 0, 0, 1, 7, 6, 0, 0, 0, 1, 7, 22, 12, 0, 0, 0, 0, 5, 42, 76, 27, 0, 0, 0, 0, 2, 49, 237, 271, 65, 0, 0, 0, 0, 1, 35, 442, 1293, 1001, 175, 0, 0, 0, 0, 0, 18, 510, 3539, 6757, 3765, 490
Offset: 0

Views

Author

Andrew Howroyd, Jun 13 2025

Keywords

Comments

The planar maps considered here are connected.
The initial terms of this sequence can be computed using the tool "plantri", in particular the command "./plantri -u -v -c1 -p [n]" will compute values for a column.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 1, 2;
  0, 0, 0, 2, 3;
  0, 0, 0, 1, 7,  6;
  0, 0, 0, 1, 7, 22,  12;
  0, 0, 0, 0, 5, 42,  76,   27;
  0, 0, 0, 0, 2, 49, 237,  271,   65;
  0, 0, 0, 0, 1, 35, 442, 1293, 1001, 175;
  ...
		

Crossrefs

Row sums are A006395.
Column sums are A372892.
Main diagonal is A006082.
Subdiagonal is A384967.
Cf. A054923 (graphs), A277741 (not necessarily simple), A342060 (2-connected), A212438 (3-connected), A384963 (version by number of vertices then faces).

A379432 Triangle read by rows: T(n,k) is the number of unsensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 7, 3, 1, 1, 4, 13, 13, 4, 1, 1, 5, 29, 44, 29, 5, 1, 1, 7, 51, 139, 139, 51, 7, 1, 1, 8, 92, 370, 623, 370, 92, 8, 1, 1, 10, 147, 913, 2307, 2307, 913, 147, 10, 1, 1, 12, 240, 2048, 7644, 11673, 7644, 2048, 240, 12, 1, 1, 14, 357, 4295, 22344, 50174, 50174, 22344, 4295, 357, 14, 1
Offset: 2

Views

Author

Andrew Howroyd, Jan 14 2025

Keywords

Comments

The maps considered here may include parallel edges.
The number of faces is n + 2 - k.

Examples

			Triangle begins:
   1;
   1,  1;
   1,  1,   1;
   1,  2,   2,   1;
   1,  3,   7,   3,    1;
   1,  4,  13,  13,    4,    1;
   1,  5,  29,  44,   29,    5,   1;
   1,  7,  51, 139,  139,   51,   7,   1;
   1,  8,  92, 370,  623,  370,  92,   8,  1;
   1, 10, 147, 913, 2307, 2307, 913, 147, 10, 1;
   ...
		

Crossrefs

Row sums are A006403.
Cf. A082680 (rooted), A342061 (sensed), A212438 (3-connected), A277741, A342060.

Formula

T(n,k) = T(n, n+2-k).
Showing 1-8 of 8 results.