cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A277741 Array read by antidiagonals: A(n,k) is the number of unsensed planar maps with n vertices and k faces, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 13, 20, 13, 3, 6, 35, 83, 83, 35, 6, 12, 104, 340, 504, 340, 104, 12, 27, 315, 1401, 2843, 2843, 1401, 315, 27, 65, 1021, 5809, 15578, 21420, 15578, 5809, 1021, 65, 175, 3407, 24299, 82546, 149007, 149007, 82546, 24299, 3407, 175
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2016

Keywords

Comments

A(n,k) is also the number of multiquadrangulations of the sphere with n stable equilibria and k unstable equilibria.
From Andrew Howroyd, Jan 13 2025: (Start)
The planar maps considered are connected and may contain loops and parallel edges.
The number of edges is n + k - 2. (End)

Examples

			The array begins:
   1,    1,    1,     2,     3,     6,   12,   27, 65, ...
   1,    2,    5,    13,    35,   104,  315, 1021, ...
   1,    5,   20,    83,   340,  1401, 5809, ...
   2,   13,   83,   504,  2843, 15578, ...
   3,   35,  340,  2843, 21420, ...
   6,  104, 1401, 15578, ...
  12,  315, 5809, ...
  27, 1021, ...
  65, ...
  ...
As a triangle, rows give the number of edges (first row is 0 edges):
   1;
   1,    1;
   1,    2,    1;
   2,    5,    5,     2;
   3,   13,   20,    13,     3;
   6,   35,   83,    83,    35,    6;
  12,  104,  340,   504,   340,   104,   12;
  27,  315, 1401,  2843,  2843,  1401,  315,   27;
  65, 1021, 5809, 15578, 21420, 15578, 5809, 1021, 65;
  ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, chapter 5.

Crossrefs

Antidiagonal sums are A006385.
Rows 1..2 (equally, columns 1..2) are A006082, A380239.
Cf. A269920 (rooted), A379430 (sensed), A379431 (achiral), A379432 (2-connected), A384963 (simple).

Formula

A(n,k) = A(k,n).
A(n,k) = (A379430(n,k) + A379431(n,k))/2. - Andrew Howroyd, Jan 14 2025

Extensions

Missing terms inserted and definition edited by Andrew Howroyd, Jan 13 2025

A380237 Number of sensed planar maps with n vertices and 2 faces.

Original entry on oeis.org

1, 2, 5, 14, 42, 140, 473, 1670, 5969, 21679, 79419, 293496, 1091006, 4078213, 15312150, 57721030, 218333832, 828408842, 3151769615, 12020870753, 45949957412, 176001205559, 675384194565, 2596119292840, 9994894356158, 38535398284100, 148772774499015, 575079507042663
Offset: 1

Views

Author

Andrew Howroyd, Jan 19 2025

Keywords

Comments

Also, by duality the number of sensed planar maps with n faces and 2 vertices.
The number of edges is n.

Crossrefs

Column 2 of A379430.
Cf. A000346 (rooted), A380238 (achiral), A380239 (unsensed), A060404 (with a distinguished face), A103943 (with a distinguished vertex).

Programs

  • PARI
    a(n) = {(binomial(n - 1, (n - 1)\2) + sumdiv(n, d, eulerphi(n/d)*(2^(2*d-1) - binomial(2*d-1, d)))/n)/2}
    
  • PARI
    seq(n)={my(c(d)=(1-sqrt(1-4*x^d + O(x*x^(n+d))))/(2*x^d)); Vec(1/(1 - x*c(2)) - 1 - sum(k=1, n, log(2 - c(k))*eulerphi(k)/k))/2}

Formula

a(n) = (A210736(n) + A060404(n))/2.
a(n) = (1/(2*n))*(n*binomial(n-1, floor((n-1)/2)) + Sum_{d|n} phi(n/d)*(2^(2*d-1) - binomial(2*d-1, d))).
G.f.: (1/2)*(1/(1 - x*C(x^2)) - 1 - Sum_{k>=1} log(1 - C(x^k)) * phi(k)/k), where C(x) is the g.f. of A000108.

A380238 Number of achiral planar maps with n vertices and 2 faces.

Original entry on oeis.org

1, 2, 5, 12, 28, 68, 157, 372, 845, 1949, 4367, 9880, 21858, 48679, 106612, 234546, 509246, 1109352, 2391299, 5167423, 11070598, 23762557, 50641725, 108085708, 229303142, 487039228, 1029167119, 2176808877, 4583856878, 9660020146, 20279242545, 42599286814
Offset: 1

Views

Author

Andrew Howroyd, Jan 19 2025

Keywords

Comments

Also by duality the number of achiral planar maps with n faces and 2 vertices.
The number of edges is n.

Crossrefs

Column 2 of A379431.
Cf. A380237 (sensed), A380239 (unsensed).

Programs

  • PARI
    G1(n)={my(g=(1-sqrt(1-4*x^2 + O(x*x^n)))/(2*x^2)); ((1 + x/(1-x-x^2*g)^2)^2/(1 - x^2*g^2) - 1)/2}
    G2(n)={my(c(d)=(1-sqrt(1-4*x^d + O(x*x^(n+d))))/(2*x^d)); sum(k=1, n, my(m=1+k%2); -log(1 - x^k*c(m*k)^(2/m))*eulerphi(k)/k, O(x*x^n))}
    seq(n)={Vec(G1(n)+G2(n))/2}

A380620 Number of unsensed combinatorial maps with n edges and 2 vertices.

Original entry on oeis.org

1, 2, 8, 33, 198, 1571, 16431, 213831, 3288821
Offset: 1

Views

Author

Andrew Howroyd, Jan 28 2025

Keywords

Comments

By duality, also the number of unsensed combinatorial maps with n edges and 2 faces.

Crossrefs

Column 2 of A380616.
Cf. A380239 (planar), A380618 (sensed), A380621 (3 vertices).

A384967 Number of unsensed simple planar maps with n vertices and 2 faces.

Original entry on oeis.org

0, 0, 1, 2, 7, 22, 76, 271, 1001, 3765, 14381, 55450, 214880, 835663, 3255652, 12698352, 49559793, 193513944, 755852101, 2953214386, 11541989533, 45123241746, 176465152051, 690340349398, 2701579878022, 10576116931462, 41418132927403, 162259989848094, 635899817853002, 2492993368347594
Offset: 1

Views

Author

Andrew Howroyd, Jun 15 2025

Keywords

Comments

In other words, a(n) is the number of embeddings on the sphere of connected simple unicyclic planar graphs with n nodes.

Crossrefs

Column 2 of A384963.
Also subdiagonal of A379430.
Cf. A001429, A006081 (cycle is loop), A380239 (not necessarily simple), A384966 (sensed version).

Programs

  • PARI
    G1(n)={my(g=(1-sqrt(1-4*x^2 + O(x^(n+2))))/(2*x^2)); ((1 + x/(1-x-x^2*g)^2)^2/(1 - x^2*g^2) - 1)/2 + 1/(1 - x*g) - 1 - x*(g^2/(1 - x*g)^2 + g) - x^2*(g^4/(1 - x*g)^4 + 3*g^2)/2}
    G2(n)={my(c(d)=(1-sqrt(1-4*x^d + O(x*x^(n+d))))/(2*x^d)); sum(k=1, n, my(m=1+k%2); -(log(2 - c(k)) + log(1 - x^k*c(m*k)^(2/m)))*eulerphi(k)/k, O(x*x^n)) - x*(c(1)^2 + c(2)) - x^2*(c(1)^4 + 3*c(2)^2)/2}
    seq(n)={Vec(G1(n)+G2(n), -n)/4}
Showing 1-5 of 5 results.