A379430
Array read by antidiagonals: A(n,k) is the number of sensed planar maps with n vertices and k faces, n >= 1, k >= 1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 14, 23, 14, 3, 6, 42, 108, 108, 42, 6, 14, 140, 501, 761, 501, 140, 14, 34, 473, 2264, 4744, 4744, 2264, 473, 34, 95, 1670, 10087, 27768, 38495, 27768, 10087, 1670, 95, 280, 5969, 44310, 153668, 279698, 279698, 153668, 44310, 5969, 280
Offset: 1
Array begins:
=========================================================
n\k | 1 2 3 4 5 6 7 8 ...
----+----------------------------------------------------
1 | 1 1 1 2 3 6 14 34 ...
2 | 1 2 5 14 42 140 473 1670 ...
3 | 1 5 23 108 501 2264 10087 44310 ...
4 | 2 14 108 761 4744 27768 153668 ...
5 | 3 42 501 4744 38495 279698 ...
6 | 6 140 2264 27768 279698 ...
7 | 14 473 10087 153668 ...
8 | 34 1670 44310 ...
...
As a triangle, rows give the number of edges (first row is 0 edges):
1;
1, 1;
1, 2, 1;
2, 5, 5, 2;
3, 14, 23, 14, 3;
6, 42, 108, 108, 42, 6;
14, 140, 501, 761, 501, 140, 14;
34, 473, 2264, 4744, 4744, 2264, 473, 34;
95, 1670, 10087, 27768, 38495, 27768, 10087, 1670, 95;
...
A380239
Number of unsensed planar maps with n vertices and 2 faces.
Original entry on oeis.org
1, 2, 5, 13, 35, 104, 315, 1021, 3407, 11814, 41893, 151688, 556432, 2063446, 7709381, 28977788, 109421539, 414759097, 1577080457, 6013019088, 22980514005, 88012484058, 337717418145, 1298113689274, 4997561829650, 19267942661664, 74386901833067, 287540841925770
Offset: 1
-
G1(n)={my(g=(1-sqrt(1-4*x^2 + O(x*x^n)))/(2*x^2)); ((1 + x/(1-x-x^2*g)^2)^2/(1 - x^2*g^2) - 1)/2 + 1/(1 - x*g) - 1}
G2(n)={my(c(d)=(1-sqrt(1-4*x^d + O(x*x^(n+d))))/(2*x^d)); sum(k=1, n, my(m=1+k%2); -(log(2 - c(k)) + log(1 - x^k*c(m*k)^(2/m)))*eulerphi(k)/k, O(x*x^n))}
seq(n)={Vec(G1(n)+G2(n))/4}
A380615
Triangle read by rows: T(n,k) is the number of sensed combinatorial maps with n edges and k vertices, 1 <= k <= n + 1.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 8, 5, 2, 18, 38, 34, 14, 3, 105, 275, 288, 154, 42, 6, 902, 2614, 3102, 1959, 705, 140, 14, 9749, 30346, 39242, 27898, 11956, 3142, 473, 34, 127072, 415360, 573654, 446078, 217000, 68544, 13886, 1670, 95, 1915951, 6513999, 9484003, 7911844, 4230802, 1523176, 373188, 60614, 5969, 280
Offset: 0
Triangle begins:
n\k | 1 2 3 4 5 6 7 8 9
----+----------------------------------------------------------------
0 | 1
1 | 1, 1
2 | 2, 2, 1;
3 | 5, 8, 5, 2;
4 | 18, 38, 34, 14, 3;
5 | 105, 275, 288, 154, 42, 6;
6 | 902, 2614, 3102, 1959, 705, 140, 14;
7 | 9749, 30346, 39242, 27898, 11956, 3142, 473, 34;
8 | 127072, 415360, 573654, 446078, 217000, 68544, 13886, 1670, 95;
...
-
InvEulerMTS(p)={my(n=serprec(p, x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i)}
b(k,r)={if(k%2, if(r%2, 0, my(j=r/2); k^j*(2*j)!/(j!*2^j)), sum(j=0, r\2, binomial(r, 2*j)*k^j*(2*j)!/(j!*2^j)))}
C(k,r,y)={my(p=sumdiv(k,d,eulerphi(k/d)*y^d)/k); sum(i=0, r, abs(stirling(r,i,1))*p^i)/r!}
S(n,k,y)={sum(r=0, 2*n\k, if(k*r%2==0, x^(k*r/2)*b(k,r)*C(k,r,y)), O(x*x^n))}
G(n,y='y)={prod(k=1, 2*n, S(n,k,y))}
T(n)={[Vecrev(p/y) | p<-Vec(y+InvEulerMTS(G(n)))]}
{ my(A=T(10)); for(i=1, #A, print(A[i])) }
A380618
Number of sensed combinatorial maps with n edges and 2 vertices.
Original entry on oeis.org
1, 2, 8, 38, 275, 2614, 30346, 415360, 6513999, 115063118, 2259975228, 48860184539, 1153140907207, 29502289676802, 813371784160602, 24040797257734161, 758379326971459945, 25432414455826532993, 903508909333199982128, 33897272145242834426910, 1339265974992611047296679
Offset: 1
-
\\ Needs G(), InvEulerMTS from A380615.
seq(n, k=2)={my(y='y); Vec(polcoef(InvEulerMTS(G(n, y*(1 + O(y^k)))), k, y))}
A380238
Number of achiral planar maps with n vertices and 2 faces.
Original entry on oeis.org
1, 2, 5, 12, 28, 68, 157, 372, 845, 1949, 4367, 9880, 21858, 48679, 106612, 234546, 509246, 1109352, 2391299, 5167423, 11070598, 23762557, 50641725, 108085708, 229303142, 487039228, 1029167119, 2176808877, 4583856878, 9660020146, 20279242545, 42599286814
Offset: 1
-
G1(n)={my(g=(1-sqrt(1-4*x^2 + O(x*x^n)))/(2*x^2)); ((1 + x/(1-x-x^2*g)^2)^2/(1 - x^2*g^2) - 1)/2}
G2(n)={my(c(d)=(1-sqrt(1-4*x^d + O(x*x^(n+d))))/(2*x^d)); sum(k=1, n, my(m=1+k%2); -log(1 - x^k*c(m*k)^(2/m))*eulerphi(k)/k, O(x*x^n))}
seq(n)={Vec(G1(n)+G2(n))/2}
A384966
Number of sensed simple planar maps with n vertices and 2 faces.
Original entry on oeis.org
0, 0, 1, 2, 8, 29, 113, 444, 1763, 6951, 27395, 107672, 422330, 1654180, 6472518, 25308760, 98923442, 386589398, 1510737079, 5904291401, 23079308104, 90236258057, 352908128341, 1380632536468, 5403055984114, 21152009997924, 82835786189975, 324518950873991, 1271797441923614, 4985982054721119
Offset: 1
-
seq(n)={my(c(d)=(1-sqrt(1-4*x^d + O(x*x^(n+d))))/(2*x^d)); Vec(1/(1 - x*c(2)) - x*(c(1)^2 + c(2)) - x^2*(c(1)^4 + 3*c(2)^2)/2 - 1 - sum(k=1, n, log(2 - c(k))*eulerphi(k)/k), -n)/2}
Showing 1-6 of 6 results.
Comments