cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A170946 Number of sensed unrooted combinatorial maps with n edges.

Original entry on oeis.org

1, 2, 5, 20, 107, 870, 9436, 122840, 1863359, 32019826, 613981447, 12989756316, 300559406027, 7550660328494, 204687564072918, 5955893472990664, 185158932576089787, 6125200100394894738, 214837724735760642773, 7963817561236130021156, 311101285883236139915989
Offset: 0

Views

Author

N. J. A. Sloane, Feb 21 2010

Keywords

Comments

Also number of "dessins d'enfants" with n edges. - Mark van Hoeij, Jan 23 2011
a(n) also counts the Feynman diagrams of the QED vacuum polarization with 2*n vertices: fermion lines (resp. boson lines, vertices) of the Feynman diagrams correspond to the vertices (resp. edges, darts) of the combinatorial maps, and the circular order of the edges around each vertex in a map is encoded in the topology of the corresponding Feynman diagram. - Andrey Zabolotskiy, Jan 28 2025

Crossrefs

Row sums of A379438 and A380615.
Cf. A170947 (achiral), A214816 (unsensed).
Cf. A268558 (inv. Euler Transf.)

Extensions

a(0)=1 prepended by Andrew Howroyd, Jan 28 2025

A380616 Triangle read by rows: T(n,k) is the number of unsensed combinatorial maps with n edges and k vertices, 1 <= k <= n + 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 8, 5, 2, 17, 33, 30, 13, 3, 79, 198, 208, 118, 35, 6, 554, 1571, 1894, 1232, 472, 104, 12, 5283, 16431, 21440, 15545, 6879, 1914, 315, 27, 65346, 213831, 296952, 233027, 115134, 37311, 7881, 1021, 65, 966156, 3288821, 4799336, 4019360, 2163112, 787065, 196267, 32857, 3407, 175
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2025

Keywords

Comments

By duality, also the number of unsensed combinatorial maps with n edges and k faces.

Examples

			Triangle begins:
n\k |     1       2       3       4       5      6     7     8   9
----+--------------------------------------------------------------
  0 |     1;
  1 |     1,      1;
  2 |     2,      2,      1;
  3 |     5,      8,      5,      2;
  4 |    17,     33,     30,     13,      3;
  5 |    79,    198,    208,    118,     35,     6;
  6 |   554,   1571,   1894,   1232,    472,   104,   12;
  7 |  5283,  16431,  21440,  15545,   6879,  1914,  315,   27;
  8 | 65346, 213831, 296952, 233027, 115134, 37311, 7881, 1021, 65;
  ...
		

Crossrefs

Row sums are A214816.
Main diagonal is A006082(n+1).
Columns 1..3 are A054499, A380620, A380621.
Cf. A053979 (rooted), A277741 (planar), A380615 (sensed), A380617 (achiral).

Formula

T(n,k) = (A380615(n,k) + A380617(n,k))/2.

A380618 Number of sensed combinatorial maps with n edges and 2 vertices.

Original entry on oeis.org

1, 2, 8, 38, 275, 2614, 30346, 415360, 6513999, 115063118, 2259975228, 48860184539, 1153140907207, 29502289676802, 813371784160602, 24040797257734161, 758379326971459945, 25432414455826532993, 903508909333199982128, 33897272145242834426910, 1339265974992611047296679
Offset: 1

Views

Author

Andrew Howroyd, Jan 28 2025

Keywords

Comments

By duality, also the number of sensed combinatorial maps with n edges and 2 faces.

Crossrefs

Column 2 of A380615.
Cf. A380237 (planar), A380619 (3 vertices), A380620 (unsensed).

Programs

  • PARI
    \\ Needs G(), InvEulerMTS from A380615.
    seq(n, k=2)={my(y='y); Vec(polcoef(InvEulerMTS(G(n, y*(1 + O(y^k)))), k, y))}

A380619 Number of sensed combinatorial maps with n edges and 3 vertices.

Original entry on oeis.org

1, 5, 34, 288, 3102, 39242, 573654, 9484003, 175036065, 3568736050, 79697415569, 1935425955944, 50794210191337, 1432898704970561, 43244525933606928, 1390448844972918928, 47455314531812444788, 1713525997666221196906, 65266335503957271588042, 2615307907226341637828915
Offset: 2

Views

Author

Andrew Howroyd, Jan 28 2025

Keywords

Comments

By duality, also the number of sensed combinatorial maps with n edges and 3 faces.

Crossrefs

Column 3 of A380615.
Cf. A380618 (2 vertices), A380621 (unsensed).

Programs

  • PARI
    \\ Needs G(), InvEulerMTS from A380615.
    seq(n, k=3)={my(y='y); Vec(polcoef(InvEulerMTS(G(n, y*(1 + O(y^k)))), k, y))}

A380617 Triangle read by rows: T(n,k) is the number of achiral combinatorial maps with n edges and k vertices, 1 <= k <= n + 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 8, 5, 2, 16, 28, 26, 12, 3, 53, 121, 128, 82, 28, 6, 206, 528, 686, 505, 239, 68, 10, 817, 2516, 3638, 3192, 1802, 686, 157, 20, 3620, 12302, 20250, 19976, 13268, 6078, 1876, 372, 35, 16361, 63643, 114669, 126876, 95422, 50954, 19346, 5100, 845, 70
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2025

Keywords

Comments

By duality, also the number of achiral combinatorial maps with n edges and k faces.

Examples

			Triangle begins:
n\k |    1      2      3      4      5     6     7    8   9
----+-------------------------------------------------------
  0 |    1;
  1 |    1,     1;
  2 |    2,     2,     1;
  3 |    5,     8,     5,     2;
  4 |   16,    28,    26,    12,     3;
  5 |   53,   121,   128,    82,    28,    6;
  6 |  206,   528,   686,   505,   239,   68,   10;
  7 |  817,  2516,  3638,  3192,  1802,  686,  157,  20;
  8 | 3620, 12302, 20250, 19976, 13268, 6078, 1876, 372, 35;
  ...
		

Crossrefs

Row sums are A170947.
Main diagonal is A001405(n-1).
Column 1 is A018191.
Cf. A379431 (planar), A380615 (sensed), A380616 (unsensed).
Showing 1-5 of 5 results.