cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A143660 Erroneous version of A170946.

Original entry on oeis.org

2, 15, 20, 107
Offset: 1

Views

Author

Keywords

Comments

The theory of dessins d'enfants was initiated by A. Grothendieck. "In this work, using the matrix model approach... we listed all the dessins d'enfants with no more than 4 edges. There are two 1-edge dessins, both of them are of genus zero, fifteen 2-edge dessins, among them only one is of genus 1, twenty 3-edge dessins: 14 sperical [sic] and 6 of genus 1 and one hundred seven 4-edge dessins: 57 spherical dessins, 46 dessins of genus 1 and 4 dessins of genus 2. The total number of dessins is 134."
Note: The fifteen for n=2 is a typo, it should be 5. The sum: 2+5+20+107=134 adds up if we replace fifteen by 5, and moreover, the section on 2-edge dessins lists all 5 (not fifteen) dessins. The correct version of this sequence is given by A170946. - Mark van Hoeij, Jan 23 2011

A379438 Triangle read by rows: T(n,k) is the number of sensed combinatorial maps with n edges and genus k, 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 2, 4, 1, 14, 6, 57, 46, 4, 312, 452, 106, 2071, 4852, 2382, 131, 15030, 52972, 46680, 8158, 117735, 587047, 830848, 313611, 14118, 967850, 6550808, 13804864, 9326858, 1369446, 8268816, 73483256, 218353000, 236095958, 74803564, 2976853, 72833730, 827801468, 3328822880, 5345316004, 3023693380, 391288854
Offset: 0

Views

Author

Andrew Howroyd, Jan 16 2025

Keywords

Examples

			Triangle begins:
  n\k     [0]      [1]       [2]      [3]      [4]
  [0]      1;
  [1]      2;
  [2]      4,       1;
  [3]     14,       6;
  [4]     57,      46,        4;
  [5]    312,     452,      106;
  [6]   2071,    4852,     2382,     131;
  [7]  15030,   52972,    46680,    8158;
  [8] 117735,  587047,   830848,  313611,   14118;
  [9] 967850, 6550808, 13804864, 9326858, 1369446;
  ...
		

Crossrefs

Row sums are A170946.
Cf. A269919 (rooted), A379439 (unsensed), A380234 (achiral), A380235.

A214816 Number of unsensed combinatorial maps with n edges on an orientable surface of any genus.

Original entry on oeis.org

1, 2, 5, 20, 96, 644, 5839, 67834, 970568, 16256556, 308620966, 6506035400, 150358570914, 3775903806928, 102348067516576, 2977979542305736, 92579723269733557, 3062602106878957610, 107418879166917701583, 3981908920500346885116, 155550644128029095714786
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2012

Keywords

Crossrefs

Row sums of A379439.
Cf. A006385, A006387, A170946 (sensed), A170947 (achiral), A170948 (chiral pairs), A214814, A214815, A297880, A297881, A348798, A348800, A348801.

Formula

a(n) = (A170946(n) + A170947(n)) / 2. [Breda d'Azevedo, Mednykh & Nedela, Corollary 4.7] - Andrey Zabolotskiy, Jun 06 2024

Extensions

a(12)-a(18) from Andrey Zabolotskiy, Jun 06 2024
a(19) onwards from Andrew Howroyd, Jan 27 2025

A170947 Number of achiral combinatorial maps with n edges.

Original entry on oeis.org

2, 5, 20, 85, 418, 2242, 12828, 77777, 493286, 3260485, 22314484, 157735801, 1147285362, 8570960234, 65611620808, 513963377327, 4113363020482, 33598074760393, 279764563749076, 2372822051513583, 20481425601917742, 179795508212739402, 1604084463778300348, 14536376462636666141
Offset: 1

Views

Author

N. J. A. Sloane, Feb 21 2010

Keywords

Comments

Achiral maps are also called reflexible.

Crossrefs

Row sums of A380234.
Cf. A170946 (sensed), A170948 (chiral pairs), A214816 (unsensed).

A380615 Triangle read by rows: T(n,k) is the number of sensed combinatorial maps with n edges and k vertices, 1 <= k <= n + 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 8, 5, 2, 18, 38, 34, 14, 3, 105, 275, 288, 154, 42, 6, 902, 2614, 3102, 1959, 705, 140, 14, 9749, 30346, 39242, 27898, 11956, 3142, 473, 34, 127072, 415360, 573654, 446078, 217000, 68544, 13886, 1670, 95, 1915951, 6513999, 9484003, 7911844, 4230802, 1523176, 373188, 60614, 5969, 280
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2025

Keywords

Comments

By duality, also the number of sensed combinatorial maps with n edges and k faces.

Examples

			Triangle begins:
n\k |      1       2       3       4       5      6      7     8   9
----+----------------------------------------------------------------
  0 |      1
  1 |      1,      1
  2 |      2,      2,      1;
  3 |      5,      8,      5,      2;
  4 |     18,     38,     34,     14,      3;
  5 |    105,    275,    288,    154,     42,     6;
  6 |    902,   2614,   3102,   1959,    705,   140,    14;
  7 |   9749,  30346,  39242,  27898,  11956,  3142,   473,   34;
  8 | 127072, 415360, 573654, 446078, 217000, 68544, 13886, 1670, 95;
  ...
		

Crossrefs

Row sums are A170946.
Main diagonal is A002995(n+1).
Second diagonal gives A380237.
Columns 1..3 are A007769, A380618, A380619.
Cf. A053979 (rooted), A379430 (planar), A380616 (unsensed), A380617 (achiral).

Programs

  • PARI
    InvEulerMTS(p)={my(n=serprec(p, x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i)}
    b(k,r)={if(k%2, if(r%2, 0, my(j=r/2); k^j*(2*j)!/(j!*2^j)), sum(j=0, r\2, binomial(r, 2*j)*k^j*(2*j)!/(j!*2^j)))}
    C(k,r,y)={my(p=sumdiv(k,d,eulerphi(k/d)*y^d)/k); sum(i=0, r, abs(stirling(r,i,1))*p^i)/r!}
    S(n,k,y)={sum(r=0, 2*n\k, if(k*r%2==0, x^(k*r/2)*b(k,r)*C(k,r,y)), O(x*x^n))}
    G(n,y='y)={prod(k=1, 2*n, S(n,k,y))}
    T(n)={[Vecrev(p/y) | p<-Vec(y+InvEulerMTS(G(n)))]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) }

A380626 Array read by antidiagonals: T(n,k) is the number of sensed k-regular combinatorial maps with n vertices, n >= 0, k >= 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 2, 3, 1, 0, 1, 0, 7, 0, 1, 0, 1, 5, 29, 36, 11, 1, 0, 1, 0, 174, 0, 365, 0, 1, 0, 1, 18, 1475, 26614, 44106, 5250, 81, 1, 0, 1, 0, 16162, 0, 10107019, 0, 103801, 0, 1, 0, 1, 105, 214215, 102762168, 3703659517, 6605320523, 549530780, 2492164, 1228, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Jan 29 2025

Keywords

Comments

The combinatorial maps considered are connected, unrooted, unlabeled, may have loops and parallel edges and are of any orientable genus.

Examples

			Array begins:
==================================================================
n\k | 1 2  3       4         5          6          7         8 ...
----+-------------------------------------------------------------
  0 | 1 1  1       1         1          1          1         1 ...
  1 | 0 1  0       2         0          5          0        18 ...
  2 | 1 1  3       7        29        174       1475     16162 ...
  3 | 0 1  0      36         0      26614          0 102762168 ...
  4 | 0 1 11     365     44106   10107019 3703659517 ...
  5 | 0 1  0    5250         0 6605320523 ...
  6 | 0 1 81  103801 549530780 ...
  7 | 0 1  0 2492164 ...
   ...
		

Crossrefs

Columns 2..6 (odd columns with interspersed zeros) are A000012, A129114, A292206, A380627, A380628.
Row n=1 is A007769 (with interspersed zeros).
Cf. A170946, A380622 (rooted), A380629.

Programs

  • PARI
    InvEulerT(v)={dirdiv(Vec(log(1+x*Ser(v)),-#v), vector(#v,n,1/n))}
    D(m,k)={my(g=gcd(m,k)); sumdiv(g, d, my(j=m/d); x^j*eulerphi(d)*k^(j-1)/j)}
    G(n,m)={my(t=m*n); prod(k=1, t, my(A=O(x^(t\k+1)), p=serconvol(exp(A + D(m,k)), exp(A + D(2,k)))); sum(r=0, t\k, if(k*r%m==0, r!*polcoef(p,r)/(k^r)*x^(k*r/m)), O(x*x^n)) )}
    T(n,k)=if(n==0, 1, InvEulerT(Vec(-1 + G(n,k), -n))[n])

Formula

A380629(n) = Sum_{d|2*n} T(d,2*n/d).

A170948 Number of chiral pairs of combinatorial maps with n edges.

Original entry on oeis.org

0, 0, 0, 0, 11, 226, 3597, 55006, 892791, 15763270, 305360481, 6483720916, 150200835113, 3774756521566, 102339496556342, 2977913930684928, 92579209306356230, 3062597993515937128, 107418845568842941190, 3981908640735783136040, 155550641755207044201203
Offset: 0

Views

Author

N. J. A. Sloane, Feb 21 2010

Keywords

Crossrefs

Cf. A170946 (sensed), A170947 (achiral), A214816 (unsensed).

Formula

a(n) = (A170946(n) - A170947(n)) / 2. [Breda d'Azevedo, Mednykh & Nedela, Corollary 4.8] - Andrey Zabolotskiy, Jun 06 2024

Extensions

Name clarified, a(0)=0 prepended and a(19) onwards added by Andrew Howroyd, Jan 27 2025

A268558 Number of not necessarily connected sensed combinatorial maps with n edges.

Original entry on oeis.org

1, 2, 8, 34, 182, 1300, 12634, 153598, 2231004, 37250236, 699699968, 14574247086, 333121322514, 8286605836248, 222824153996898, 6439779836400464, 199051769194393718, 6552226226766384216, 228826838199807593530, 8450335361750379998822, 329002470731473098130572
Offset: 0

Views

Author

N. J. A. Sloane, Mar 02 2016

Keywords

Comments

Original name: Arises in counting maps on a surface: see Coquereaux-Zuber (2015) for precise definition.
Number of nonisomorphic pairs (s,t) of permutations on a 2n-set where t is a fixed point free involution (i.e. all 2-cycles). Isomorphism is up to permutations of the n-set. - Andrew Howroyd, Jan 28 2025

Crossrefs

Euler transform of A170946.

Programs

  • PARI
    b(k,r)={if(k%2, if(r%2, 0, my(j=r/2); k^j*(2*j)!/(j!*2^j)), sum(j=0, r\2, binomial(r, 2*j)*k^j*(2*j)!/(j!*2^j)))}
    S(n,k)={sum(r=0, 2*n\k, if(k*r%2==0, x^(k*r/2)*b(k,r)), O(x*x^n))}
    seq(n)={Vec(prod(k=1, 2*n, S(n,k)))} \\ Andrew Howroyd, Jan 28 2025

Extensions

a(11)-a(18) from Euler transform of A170946 - R. J. Mathar, Apr 07 2022
a(0)=1 prepended and a(19)-a(20) (via A170946) from Alois P. Heinz, Jan 27 2025
Name edited by Andrew Howroyd, Jan 31 2025

A380365 Number of sensed combinatorial maps with n edges and without faces of degree 1.

Original entry on oeis.org

1, 1, 3, 11, 50, 365, 3782, 47935, 718202, 12245679, 233541489, 4920828395, 113495838798, 2843930973805, 76932818058660, 2234631397864123, 69368177318863458, 2291843543825994905, 80296746074069588380, 2973657775519950500203, 116065360915389313936460
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2025

Keywords

Crossrefs

Cf. A006388 (planar), A170946, A380364 (rooted), A380366 (unsensed).

Programs

  • PARI
    InvEulerT(v)={dirdiv(Vec(log(1+x*Ser(v)),-#v), vector(#v,n,1/n))}
    b(k,r)={if(k%2, if(r%2, 0, my(j=r/2); k^j*(2*j)!/(j!*2^j)), sum(j=0, r\2, binomial(r, 2*j)*k^j*(2*j)!/(j!*2^j)))}
    C(k,r)={sum(i=0, r, (-1)^i/i!/k^i)}
    S(n,k)={sum(r=0, 2*n\k, if(k*r%2==0, x^(k*r/2)*b(k,r)*C(k,r)), O(x*x^n))}
    seq(n)={concat([1], InvEulerT(Vec(-1 + prod(k=1, 2*n, S(n,k)))))}

A380629 Number of sensed regular combinatorial maps with n edges.

Original entry on oeis.org

1, 2, 3, 9, 26, 135, 1124, 11225, 143600, 2156862, 36069006, 681844857, 14387370477, 327462904319, 8171705457024, 221137571070305, 6373582250114091, 197210862517274355, 6521583445100185049, 227168823675390365225, 8396976723995537706278, 327880018217851412105973
Offset: 0

Views

Author

Andrew Howroyd, Jan 29 2025

Keywords

Crossrefs

Cf. A170946, A380625 (rooted), A380626.

Programs

  • PARI
    a(n)={if(n==0, 1, sumdiv(2*n, d, T(d,2*n/d)))} \\ T(n,k) defined in A380622.

Formula

a(n) = Sum_{d|2*n} A380626(d,2*n/d) for n > 0.
Showing 1-10 of 11 results. Next