A006385
Number of unsensed planar maps with n edges.
Original entry on oeis.org
1, 2, 4, 14, 52, 248, 1416, 9172, 66366, 518868, 4301350, 37230364, 333058463, 3057319072, 28656583950, 273298352168, 2645186193457, 25931472185976, 257086490694917, 2574370590192556, 26010904915620261
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, personal communication.
- Richard Kapolnai, Gabor Domokos, and Timea Szabo, Generating spherical multiquadrangulations by restricted vertex splittings and the reducibility of equilibrium classes, Periodica Polytechnica Electrical Engineering, 56(1):11-10, 2012. Also arXiv:1206.1698, 2012. See Table 2.
- Valery. A. Liskovets, A reductive technique for enumerating nonisomorphic planar maps, Discr. Math., v.156 (1996), 197-217.
- Timothy R. Walsh, Generating nonisomorphic maps without storing them, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- Timothy R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3
- Nicholas C. Wormald, Counting unrooted planar maps, Discrete Math. 36 (1981), no. 2, 205-225.
A379439
Triangle read by rows: T(n,k) is the number of unsensed combinatorial maps with n edges and genus k, 0 <= k <= floor(n/2).
Original entry on oeis.org
1, 2, 4, 1, 14, 6, 52, 40, 4, 248, 320, 76, 1416, 2946, 1395, 82, 9172, 29364, 24950, 4348, 66366, 309558, 427336, 160050, 7258, 518868, 3365108, 6987100, 4696504, 688976, 4301350, 37246245, 109761827, 118353618, 37466297, 1491629, 37230364, 416751008, 1668376886, 2675297588, 1512650776, 195728778
Offset: 0
Triangle begins:
n\k [0] [1] [2] [3] [4]
[0] 1;
[1] 2;
[2] 4, 1;
[3] 14, 6;
[4] 52, 40, 4;
[5] 248, 320, 76;
[6] 1416, 2946, 1395, 82;
[7] 9172, 29364, 24950, 4348;
[8] 66366, 309558, 427336, 160050, 7258;
[9] 518868, 3365108, 6987100, 4696504, 688976;
A170946
Number of sensed unrooted combinatorial maps with n edges.
Original entry on oeis.org
1, 2, 5, 20, 107, 870, 9436, 122840, 1863359, 32019826, 613981447, 12989756316, 300559406027, 7550660328494, 204687564072918, 5955893472990664, 185158932576089787, 6125200100394894738, 214837724735760642773, 7963817561236130021156, 311101285883236139915989
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..400 (terms 1..30 from Antonio Breda d'Azevedo, Alexander Mednykh and Roman Nedela)
- Antonio Breda d'Azevedo, Alexander Mednykh and Roman Nedela, Enumeration of maps regardless of genus: Geometric approach, Discrete Mathematics, Volume 310, 2010, Pages 1184-1203.
- N. M. Adrianov, N. Ya. Amburg, V. A. Dremov, Yu. A. Levitskaya, E. M. Kreines, Yu. Yu. Kochetkov, V. F. Nasretdinova and G. B. Shabat, Catalog of dessins d'enfants with <= 4 edges, arXiv:0710.2658 [math.AG], 2007.
- R. J. Mathar, Feynman diagrams of the QED vacuum polarization, vixra:1901.0148 (2019), Section V. Computed up to a(5), plotted up to a(4).
- R. de Mello Koch and S. Ramgoolam, Strings from Feynman graph counting: without large N, Phys Rev D, 85 (2012) 026007; arXiv:1110.4858 [hep-th], 2011-2012. The terms in Eq. (D.10) from a(7) on are erroneous.
A006387
Number of unsensed genus 1 maps with n edges.
Original entry on oeis.org
0, 0, 1, 6, 40, 320, 2946, 29364, 309558, 3365108, 37246245, 416751008, 4696232371, 53186743416, 604690121555, 6896534910612, 78867385697513, 904046279771682, 10384916465797240, 119522063788612992, 1378014272286250059
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Evgeniy Krasko and Alexander Omelchenko, Enumeration of Unsensed Orientable Maps on Surfaces of a Given Genus, arXiv:1712.10139 [math.CO], 2017.
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- Timothy R. Walsh, Generating nonisomorphic maps without storing them, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.
- T. R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3
A214814
Number of unsensed genus 2 maps with n edges.
Original entry on oeis.org
0, 0, 0, 0, 4, 76, 1395, 24950, 427336, 6987100, 109761827, 1668376886, 24689351504, 357467967214, 5083309341304, 71209097157108, 984963603696282, 13477371260785608, 182698708325667710, 2456600457435363198, 32796863046711248526
Offset: 0
A214815
Number of unsensed genus 3 maps with n edges.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 82, 4348, 160050, 4696504, 118353618, 2675297588, 55758114082, 1091344752470, 20318440463052, 363171011546210, 6275111078422480, 105369657960443204, 1726590417107274316, 27699670730854989616, 436246336648672487876
Offset: 0
A297880
Number of unsensed genus 4 maps with n edges.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 7258, 688976, 37466297, 1512650776, 50355225387, 1461269893538, 38236656513725, 922552326544030, 20847359639841664, 446290728182323620, 9129236228868478458, 179639607187998993180, 3418366706444416598777
Offset: 0
A170947
Number of achiral combinatorial maps with n edges.
Original entry on oeis.org
2, 5, 20, 85, 418, 2242, 12828, 77777, 493286, 3260485, 22314484, 157735801, 1147285362, 8570960234, 65611620808, 513963377327, 4113363020482, 33598074760393, 279764563749076, 2372822051513583, 20481425601917742, 179795508212739402, 1604084463778300348, 14536376462636666141
Offset: 1
- Antonio Breda d'Azevedo, Alexander Mednykh, and Roman Nedela, Table of n, a(n) for n = 1..30
- Antonio Breda d'Azevedo, Alexander Mednykh, and Roman Nedela, Enumeration of maps regardless of genus: Geometric approach, Discrete Mathematics, Volume 310, 2010, Pages 1184-1203.
A297881
Number of unsensed genus 5 maps with n edges.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1491629, 195728778, 14019733828, 724646387874, 30220873171570, 1079253898643492, 34231899372185491, 988157793188200998, 26412878913430197293, 662133032168309300424, 15719783014093104131694
Offset: 0
A380616
Triangle read by rows: T(n,k) is the number of unsensed combinatorial maps with n edges and k vertices, 1 <= k <= n + 1.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 8, 5, 2, 17, 33, 30, 13, 3, 79, 198, 208, 118, 35, 6, 554, 1571, 1894, 1232, 472, 104, 12, 5283, 16431, 21440, 15545, 6879, 1914, 315, 27, 65346, 213831, 296952, 233027, 115134, 37311, 7881, 1021, 65, 966156, 3288821, 4799336, 4019360, 2163112, 787065, 196267, 32857, 3407, 175
Offset: 0
Triangle begins:
n\k | 1 2 3 4 5 6 7 8 9
----+--------------------------------------------------------------
0 | 1;
1 | 1, 1;
2 | 2, 2, 1;
3 | 5, 8, 5, 2;
4 | 17, 33, 30, 13, 3;
5 | 79, 198, 208, 118, 35, 6;
6 | 554, 1571, 1894, 1232, 472, 104, 12;
7 | 5283, 16431, 21440, 15545, 6879, 1914, 315, 27;
8 | 65346, 213831, 296952, 233027, 115134, 37311, 7881, 1021, 65;
...
Showing 1-10 of 12 results.
Comments