cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A215402 Number of rooted maps of (orientable) genus 4 containing n edges.

Original entry on oeis.org

225225, 24635754, 1495900107, 66519597474, 2416610807964, 75981252764664, 2141204115631518, 55352670009315660, 1334226671709010578, 30347730709395639732, 657304672067357799042, 13652607304062788395788, 273469313030628783700080, 5306599156694095573465824, 100128328831437989131706976, 1842794650155970906232185656
Offset: 8

Views

Author

Alain Giorgetti, Aug 09 2012

Keywords

Crossrefs

Row sums of A269924.
Column g=4 of A269919.
Cf. A215019 (unrooted sensed maps), A297880 (unrooted unsensed maps).
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, this sequence, A238355, A238356, A238357, A238358, A238359, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 4];
    Table[a[n], {n, 8, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
    A215402_ser(N) = {
      my(y=A005159_ser(N+1));
      -y*(y-1)^8*(15812*y^12 - 189744*y^11 + 4708549*y^10 - 24892936*y^9 + 173908449*y^8 - 567987942*y^7 + 1743939189*y^6 - 3485359548*y^5 + 5448471852*y^4 - 6051484928*y^3 + 4633500336*y^2 - 2228416192*y + 517976128)/(81*(y-2)^17*(y+2)^10);
    };
    Vec(A215402_ser(16)) \\ Gheorghe Coserea, Jun 02 2017

Extensions

More terms from Joerg Arndt, Feb 26 2014

A379439 Triangle read by rows: T(n,k) is the number of unsensed combinatorial maps with n edges and genus k, 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 2, 4, 1, 14, 6, 52, 40, 4, 248, 320, 76, 1416, 2946, 1395, 82, 9172, 29364, 24950, 4348, 66366, 309558, 427336, 160050, 7258, 518868, 3365108, 6987100, 4696504, 688976, 4301350, 37246245, 109761827, 118353618, 37466297, 1491629, 37230364, 416751008, 1668376886, 2675297588, 1512650776, 195728778
Offset: 0

Views

Author

Andrew Howroyd, Jan 16 2025

Keywords

Examples

			Triangle begins:
  n\k     [0]      [1]      [2]      [3]     [4]
  [0]      1;
  [1]      2;
  [2]      4,       1;
  [3]     14,       6;
  [4]     52,      40,       4;
  [5]    248,     320,      76;
  [6]   1416,    2946,    1395,      82;
  [7]   9172,   29364,   24950,    4348;
  [8]  66366,  309558,  427336,  160050,   7258;
  [9] 518868, 3365108, 6987100, 4696504, 688976;
		

Crossrefs

Row sums are A214816.
Cf. A269919 (rooted), A379438 (sensed), A380234 (achiral), A380235.

Formula

T(n,k) = (A379438(n,k) + A380234(n,k))/2.

A214816 Number of unsensed combinatorial maps with n edges on an orientable surface of any genus.

Original entry on oeis.org

1, 2, 5, 20, 96, 644, 5839, 67834, 970568, 16256556, 308620966, 6506035400, 150358570914, 3775903806928, 102348067516576, 2977979542305736, 92579723269733557, 3062602106878957610, 107418879166917701583, 3981908920500346885116, 155550644128029095714786
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2012

Keywords

Crossrefs

Row sums of A379439.
Cf. A006385, A006387, A170946 (sensed), A170947 (achiral), A170948 (chiral pairs), A214814, A214815, A297880, A297881, A348798, A348800, A348801.

Formula

a(n) = (A170946(n) + A170947(n)) / 2. [Breda d'Azevedo, Mednykh & Nedela, Corollary 4.7] - Andrey Zabolotskiy, Jun 06 2024

Extensions

a(12)-a(18) from Andrey Zabolotskiy, Jun 06 2024
a(19) onwards from Andrew Howroyd, Jan 27 2025

A215019 Number of unrooted maps with n edges of (orientable) genus 4.

Original entry on oeis.org

14118, 1369446, 74803564, 3023693380, 100692692173, 2922359760376, 76471600288836, 1845089145736960, 41694584320696782, 892580319444417876, 18258463136626650660, 359279139700128276168, 6836732826365623258492, 126347598971804884131800, 2275643837092089686415858
Offset: 8

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

Column k=4 of A379438.
Cf. A215402 (rooted), A297880 (unsensed).
Cf. A006386, A104595, A104596 (genus 3), A239918 (genus 5), A239919 (genus 6).

Extensions

a(12) onwards added by Andrew Howroyd, Jan 18 2025

A348798 a(n) = number of unsensed genus 6 maps with n edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 506855279, 84930743344, 7601322881752, 482475325333252, 24347701836204379, 1038820801135250668, 38928478953655850016, 1314623638623845390906, 40749347642026348171659
Offset: 0

Views

Author

Michael De Vlieger, Nov 01 2021

Keywords

Crossrefs

Column k=6 of A379439.
Cf. A238356 (rooted), A239919 (sensed).

A297881 Number of unsensed genus 5 maps with n edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1491629, 195728778, 14019733828, 724646387874, 30220873171570, 1079253898643492, 34231899372185491, 988157793188200998, 26412878913430197293, 662133032168309300424, 15719783014093104131694
Offset: 0

Views

Author

Evgeniy Krasko, Jan 07 2018

Keywords

Crossrefs

Column k=5 of A379439.
Cf. A238355 (rooted), A239918 (sensed).

A348800 a(n) = number of unsensed genus 7 maps with n edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 254118439668, 52148049818864, 5634797561708385, 426497331688178676, 25388940147173859412, 1265623233919838264624, 54940200059090328012148
Offset: 0

Views

Author

Michael De Vlieger, Nov 01 2021

Keywords

Crossrefs

Column k=7 of A379439.
Cf. A238357 (rooted), A239921 (sensed).

A348801 a(n) = number of unsensed genus 8 maps with n edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 176377605783906, 43058445711817178, 5477393987229533288, 483573171728920541590, 33299663456795126129156
Offset: 0

Views

Author

Michael De Vlieger, Nov 01 2021

Keywords

Crossrefs

Column k=8 of A379439.
Cf. A238358 (rooted), A239922 (sensed).
Showing 1-8 of 8 results.