cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Gheorghe Coserea

Gheorghe Coserea's wiki page.

Gheorghe Coserea has authored 314 sequences. Here are the ten most recent ones:

A321714 Numbers k such that lambda(k) = 12.

Original entry on oeis.org

13, 26, 35, 39, 45, 52, 65, 70, 78, 90, 91, 104, 105, 112, 117, 130, 140, 144, 156, 180, 182, 195, 208, 210, 234, 260, 273, 280, 312, 315, 336, 360, 364, 390, 420, 455, 468, 520, 546, 560, 585, 624, 630, 720, 728, 780, 819, 840, 910, 936, 1008, 1040, 1092, 1170, 1260, 1365, 1456, 1560, 1638, 1680, 1820, 1872, 2184, 2340, 2520, 2730, 3120, 3276, 3640, 4095, 4368, 4680, 5040, 5460, 6552, 7280, 8190, 9360, 10920, 13104, 16380, 21840, 32760, 65520
Offset: 1

Author

Gheorghe Coserea, Feb 21 2019

Keywords

Comments

Here lambda is Carmichael's lambda function (see A002322).

Crossrefs

Programs

  • Mathematica
    Select[Range[65520], CarmichaelLambda[#] == 12 &] (* Paolo Xausa, Feb 28 2024 *)
  • PARI
    lambda(n) = { \\ A002322
      my(f=factor(n), fsz=matsize(f)[1]);
      lcm(vector(fsz, k, my(p=f[k,1], e=f[k,2]);
          if (p != 2, p^(e-1)*(p-1), e > 2, 2^(e-2), 2^(e-1))));
    };
    invlambda(n) = { \\ A270562
      if (n <= 0, return(0), n==1, return(2), n%2, return(0));
      my(f=factor(n), fsz=matsize(f)[1], g=1, h=1);
      for (k=1, fsz, my(p=f[k,1], e=1);
        while (n % lambda(p^e) == 0, e++); g *= p^(e-1));
      fordiv(n, d, if (isprime(d+1) && g % (d+1) != 0, h *= (d+1)));
      g *= h; if (lambda(g) != n, 0, g);
    };
    lambda_level(n) = {
      my(N = invlambda(n)); if (!N, return([])); my(s=List());
      fordiv(N, d, if (lambda(d) == n, listput(s, d)));
      Set(s);
    };
    lambda_level(12)

A321713 a(n) is the number of values k satisfying lambda(k)=n or zero if there is no solution, where lambda(k) is Carmichael's lambda function.

Original entry on oeis.org

2, 6, 0, 12, 0, 16, 0, 4, 0, 8, 0, 84, 0, 0, 0, 32, 0, 40, 0, 32, 0, 8, 0, 20, 0, 0, 0, 20, 0, 64, 0, 8, 0, 0, 0, 480, 0, 0, 0, 80, 0, 48, 0, 12, 0, 8, 0, 160, 0, 0, 0, 20, 0, 16, 0, 4, 0, 8, 0, 1216, 0, 0, 0, 8, 0, 64, 0, 0, 0, 16, 0, 872, 0, 0, 0, 0, 0, 24, 0, 160, 0, 8, 0, 532, 0, 0, 0, 52, 0, 120, 0, 12, 0, 0, 0, 424, 0, 0, 0, 100
Offset: 1

Author

Gheorghe Coserea, Feb 21 2019

Keywords

Examples

			For n=12 there are a(12)=84 values N satisfying lambda(N)=12; the values are enumerated in A321714.
		

Crossrefs

Programs

  • PARI
    lambda(n) = { \\ A002322
      my(f=factor(n), fsz=matsize(f)[1]);
      lcm(vector(fsz, k, my(p=f[k,1], e=f[k,2]);
          if (p != 2, p^(e-1)*(p-1), e > 2, 2^(e-2), 2^(e-1))));
    };
    invlambda(n) = { \\ A270562
      if (n <= 0, return(0), n==1, return(2), n%2, return(0));
      my(f=factor(n), fsz=matsize(f)[1], g=1, h=1);
      for (k=1, fsz, my(p=f[k,1], e=1);
        while (n % lambda(p^e) == 0, e++); g *= p^(e-1));
      fordiv(n, d, if (isprime(d+1) && g % (d+1) != 0, h *= (d+1)));
      g *= h; if (lambda(g) != n, 0, g);
    };
    lambda_level(n) = {
      my(N = invlambda(n)); if (!N, return([])); my(s=List());
      fordiv(N, d, if (lambda(d) == n, listput(s, d)));
      Set(s);
    };
    a(n) = length(lambda_level(n));
    vector(100, n, a(n))
    
  • PARI
    b(n) = { \\ number of k satisfying lambda(k) | n
    my(R = 1);
    fordiv (n, d, if(isprime(d+1),
      my(e = 1); while(n % (d+1) == 0, n /= d+1; e++);
      if (d == 1 && e > 1, e++); R *= e+1));
    R
    };
    a(n) = if (n <= 0, 0, n == 1, 2, n % 2, 0, sumdiv(n, d, moebius(n/d) * b(d)));
    vector(100, n, a(n)) \\ Bertram Felgenhauer, Mar 27 2022

A321711 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 1, 0, 3, 0, 0, 11, 9, 0, 1, 53, 120, 60, 40, 9, 309, 1410, 1800, 1590, 885, 216, 2119, 16560, 39960, 55120, 52065, 29016, 7570, 16687, 202755, 801780, 1696555, 2433165, 2300403, 1326850, 357435, 148329, 2624496, 15606360, 48387024, 99650670, 141429456, 135382464, 79738800, 22040361, 1468457, 36080100, 304274880, 1323453180, 3760709526, 7493549868, 10570597800, 10199809980, 6103007505, 1721632024
Offset: 0

Author

Gheorghe Coserea, Nov 27 2018

Keywords

Examples

			For n=3 we have s1 = z1 + z2 + z3, s2 = z1^2 + z2^2 + z3^2, s12 = z1*z2 + z1*z3 + z2*z3, f1 = z1^2 + z2^2 + z3^2 + t*z2*z3 + z1*(z2 + z3), f2 = z1^2 + z2^2 + z3^2 + t*z1*z3 + z2*(z1 + z3), f3 = z1^2 + z2^2 + z3^2 + t*z1*z2 + z3*(z1 + z2), [(z1*z2*z3)^2] f1*f2*f3 = 11 + 9*t + t^3, therefore P_3(t) = 11 + 9*t + t^3.
A(x;t) = 1 + x + 3*x^2 + (11 + 9*t + t^3)*x^3 + (53 + 120*t + 60*t^2 + 40*t^3 + 9*t^4)*x^4 + ...
Triangle starts:
n\k [0]    [1]     [2]     [3]      [4]      [5]      [6]      [7]
[0] 1;
[1] 1;     0;
[2] 3;     0;      0;
[3] 11,    9,      0,      1;
[4] 53,    120,    60,     40,      9;
[5] 309,   1410,   1800,   1590,    885,     216;
[6] 2119,  16560,  39960,  55120,   52065,   29016,   7570;
[7] 16687, 202755, 801780, 1696555, 2433165, 2300403, 1326850, 357435;
[8] ...
		

Crossrefs

Programs

  • PARI
    P(n, t='t) = {
      my(z=vector(n, k, eval(Str("z", k))),
         s1=sum(k=1, #z, z[k]), s2=sum(k=1, #z, z[k]^2), s12=(s1^2 - s2)/2,
         f=vector(n, k, s2 + t*(s12 - z[k]*(s1 - z[k])) + z[k]*(s1 - z[k])), g=1);
      for (i=1, n, g *= f[i]; for(j=1, n, g=substpol(g, z[j]^3, 0)));
      for (k=1, n, g=polcoef(g, 2, z[k]));
      g;
    };
    seq(N) = concat([[1], [1, 0], [3, 0, 0]], apply(n->Vecrev(P(n,'t)), [3..N]));
    concat(seq(9))

Formula

Let z1..zn be n variables and s1 = Sum_{k=1..n} zk, s2 = Sum_{k=1..n} zk^2, s12 = (s1^2 - s2)/2, fk = s2 + t*(s12 - zk*(s1 - zk)) + zk*(s1 - zk) for k=1..n; we define P_n(t) = [(z1..zn)^2] Product_{k=1..n} fk.
A000255(n) = T(n,0).
A007107(n) = T(n,n).
A000681(n) = Sum_{k=0..n} T(n,k).
A274308(n) = Sum_{k=0..n} T(n,k)*2^k.

A321709 Number of genus 9 rooted hypermaps with n darts.

Original entry on oeis.org

640237370572800, 125042114810880000, 12663309118470912000, 885531242655070387200, 48050907406540671926016, 2155959161260047868965120, 83244478130310272277600000, 2842577637658581528366266112, 87562415111185051655245105920, 2469899876154506406497571909952
Offset: 19

Author

Gheorghe Coserea, Nov 17 2018

Keywords

Crossrefs

Column 9 of A321710.

A318104 Number of genus 4 rooted hypermaps with n darts.

Original entry on oeis.org

8064, 579744, 23235300, 684173164, 16497874380, 344901105444, 6471056247920, 111480953909328, 1792031518697232, 27197316623478960, 393207192141924744, 5453210050430783640, 72949244341257096792, 945523594111460363208, 11918067649004916470640, 146538779626167833263888, 1762112462707129510538640
Offset: 9

Author

Gheorghe Coserea, Nov 12 2018

Keywords

Comments

Column k = 4 of A321710.
a(n) = 0 for n < 9. - N. J. A. Sloane, Dec 24 2018

Examples

			A(x) = 8064*x^9 + 579744*x^10 + 23235300*x^11 + 684173164*x^12 + ...
		

Crossrefs

Programs

  • Mathematica
    y = (1 - Sqrt[1 - 8 x])/(4 x);
    gf = -y (y-1)^9 (262 y^14 - 4716 y^13 + 78327 y^12 - 569134 y^11 + 3266910 y^10 - 12675726 y^9 + 37548087 y^8 - 82680972 y^7 + 137674842 y^6 - 170295272 y^5 + 152918277 y^4 - 94811622 y^3 + 37127810 y^2 - 7566846 y + 505869)/(4 (y-2)^17 (y+1)^13);
    Drop[CoefficientList[gf + O[x]^26, x], 9] (* Jean-François Alcover, Feb 07 2019, from PARI *)
  • PARI
    seq(N) = {
      my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
      Vec(-y*(y - 1)^9*(262*y^14 - 4716*y^13 + 78327*y^12 - 569134*y^11 + 3266910*y^10 - 12675726*y^9 + 37548087*y^8 - 82680972*y^7 + 137674842*y^6 - 170295272*y^5 + 152918277*y^4 - 94811622*y^3 + 37127810*y^2 - 7566846*y + 505869)/(4*(y - 2)^17*(y + 1)^13));
    };
    seq(17)

Formula

G.f.: -y*(y - 1)^9*(262*y^14 - 4716*y^13 + 78327*y^12 - 569134*y^11 + 3266910*y^10 - 12675726*y^9 + 37548087*y^8 - 82680972*y^7 + 137674842*y^6 - 170295272*y^5 + 152918277*y^4 - 94811622*y^3 + 37127810*y^2 - 7566846*y + 505869)/(4*(y - 2)^17*(y + 1)^13), where y = C(2*x), C being the g.f. for A000108.

A321708 Number of genus 8 rooted hypermaps with n darts.

Original entry on oeis.org

2324754432000, 392578737868800, 34628437757170944, 2123123613378727680, 101617019078765734656, 4043718573909964925184, 139173710438785042157056, 4255877128208539192614720, 117904584208478764267020480, 3002991800410924564910152160, 71123951019277304732006170020
Offset: 17

Author

Gheorghe Coserea, Nov 17 2018

Keywords

Crossrefs

Column 8 of A321710.

A321707 Number of genus 7 rooted hypermaps with n darts.

Original entry on oeis.org

10897286400, 1560315052800, 117805728533760, 6234567636407040, 259518044572234560, 9042873557130178560, 274213957041780607040, 7429773263737371426000, 183321599847270732775284, 4178263675886440605897708, 88944569813776527012125700, 1783998282211666387087167804
Offset: 15

Author

Gheorghe Coserea, Nov 17 2018

Keywords

Crossrefs

Column 7 of A321710.

Programs

  • PARI
    seq(N) = {
      my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
      Vec(y*(y - 1)^15*(65934428*y^29 - 2373639408*y^28 + 78065287272*y^27 - 1239982167455*y^26 + 15824435903631*y^25 - 147973440711114*y^24 + 1121119206347992*y^23 - 6897821674771866*y^22 + 35411504747483046*y^21 - 153195355715747532*y^20 + 564430051160248776*y^19 - 1782487694948370405*y^18 + 4847762532445875077*y^17 - 11385796789588847190*y^16 + 23121306258262005552*y^15 - 40583304876425900476*y^14 + 61456131914028384816*y^13 - 80013191284851054552*y^12 + 89093563965211655640*y^11 - 84217909084706439705*y^10 + 66908561791095714729*y^9 - 44081770356535124534*y^8 + 23656775380308201720*y^7 - 10093706157332984394*y^6 + 3311499493215102574*y^5 - 796565568171137388*y^4 + 130914104820311544*y^3 - 13151257876934851*y^2 + 664822027105443*y - 11057829184170)/(2*(y - 2)^32*(y + 1)^25));
    };
    seq(12)

Formula

G.f.: y*(y - 1)^15*(65934428*y^29 - 2373639408*y^28 + 78065287272*y^27 - 1239982167455*y^26 + 15824435903631*y^25 - 147973440711114*y^24 + 1121119206347992*y^23 - 6897821674771866*y^22 + 35411504747483046*y^21 - 153195355715747532*y^20 + 564430051160248776*y^19 - 1782487694948370405*y^18 + 4847762532445875077*y^17 - 11385796789588847190*y^16 + 23121306258262005552*y^15 - 40583304876425900476*y^14 + 61456131914028384816*y^13 - 80013191284851054552*y^12 + 89093563965211655640*y^11 - 84217909084706439705*y^10 + 66908561791095714729*y^9 - 44081770356535124534*y^8 + 23656775380308201720*y^7 - 10093706157332984394*y^6 + 3311499493215102574*y^5 - 796565568171137388*y^4 + 130914104820311544*y^3 - 13151257876934851*y^2 + 664822027105443*y - 11057829184170)/(2*(y - 2)^32*(y + 1)^25), where y=A000108(2*x).

A321706 Number of genus 6 rooted hypermaps with n darts.

Original entry on oeis.org

68428800, 8099018496, 511859777472, 22925949056640, 815521082030784, 24494440792190400, 645212095792089220, 15292175926873102956, 332150183310464271324, 6702637985834037183508, 126995200843857803023176, 2278149500006567629947864, 38954050134978747926573016
Offset: 13

Author

Gheorghe Coserea, Nov 17 2018

Keywords

Crossrefs

Column 6 of A321710.

Programs

  • PARI
    seq(N) = {
      my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
      Vec(-y*(y - 1)^13*(1080091*y^24 - 32402730*y^23 + 889296813*y^22 - 11575684382*y^21 + 120636055215*y^20 - 908735922846*y^19 + 5491340556019*y^18 - 26587756725282*y^17 + 105914199493428*y^16 - 349844034215428*y^15 + 966356094916770*y^14 - 2240740995310188*y^13 + 4368032453176430*y^12 - 7149882085566108*y^11 + 9789363335577126*y^10 - 11134972065337540*y^9 + 10413235525450707*y^8 - 7887398782084338*y^7 + 4736927774219617*y^6 - 2188131419800854*y^5 + 743586620967027*y^4 - 173682661266854*y^3 + 24974862235959*y^2 - 1816988020602*y + 43470403150)/(4*(y - 2)^27*(y + 1)^21));
    };
    seq(13)

Formula

G.f.: -y*(y - 1)^13*(1080091*y^24 - 32402730*y^23 + 889296813*y^22 - 11575684382*y^21 + 120636055215*y^20 - 908735922846*y^19 + 5491340556019*y^18 - 26587756725282*y^17 + 105914199493428*y^16 - 349844034215428*y^15 + 966356094916770*y^14 - 2240740995310188*y^13 + 4368032453176430*y^12 - 7149882085566108*y^11 + 9789363335577126*y^10 - 11134972065337540*y^9 + 10413235525450707*y^8 - 7887398782084338*y^7 + 4736927774219617*y^6 - 2188131419800854*y^5 + 743586620967027*y^4 - 173682661266854*y^3 + 24974862235959*y^2 - 1816988020602*y + 43470403150)/(4*(y - 2)^27*(y + 1)^21), where y=A000108(2*x).

A321705 Number of genus 5 rooted hypermaps with n darts.

Original entry on oeis.org

604800, 57170880, 2936606400, 108502598960, 3225186125460, 81861294718764, 1840409325096500, 37558997857897164, 708015469597497732, 12488421105878928700, 208161512148250424484, 3304395638081490531324, 50267199680265668419244, 736516493829967530909204, 10437808798822929984593100
Offset: 11

Author

Gheorghe Coserea, Nov 17 2018

Keywords

Crossrefs

Column 5 of A321710.

Programs

  • PARI
    seq(N) = {
      my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
      Vec(y*(y - 1)^11*(13150*y^19 - 315600*y^18 + 6947865*y^17 - 70489470*y^16 + 569637816*y^15 - 3253135788*y^14 + 14658702716*y^13 - 51696766668*y^12 + 146255446788*y^11 - 332779761068*y^10 + 610739916966*y^9 - 900544355928*y^8 + 1057440629016*y^7 - 973453624356*y^6 + 685359139356*y^5 - 355019010868*y^4 + 127180243662*y^3 - 28342783668*y^2 + 3224985513*y - 120590634)/(4*(y - 2)^22*(y + 1)^17));
    };
    seq(15)

Formula

G.f.: y*(y - 1)^11*(13150*y^19 - 315600*y^18 + 6947865*y^17 - 70489470*y^16 + 569637816*y^15 - 3253135788*y^14 + 14658702716*y^13 - 51696766668*y^12 + 146255446788*y^11 - 332779761068*y^10 + 610739916966*y^9 - 900544355928*y^8 + 1057440629016*y^7 - 973453624356*y^6 + 685359139356*y^5 - 355019010868*y^4 + 127180243662*y^3 - 28342783668*y^2 + 3224985513*y - 120590634)/(4*(y - 2)^22*(y + 1)^17), where y=A000108(2*x).

A321710 Triangle read by rows: T(n,k) is the number of rooted hypermaps of genus k with n darts.

Original entry on oeis.org

1, 3, 12, 1, 56, 15, 288, 165, 8, 1584, 1611, 252, 9152, 14805, 4956, 180, 54912, 131307, 77992, 9132, 339456, 1138261, 1074564, 268980, 8064, 2149888, 9713835, 13545216, 6010220, 579744, 13891584, 81968469, 160174960, 112868844, 23235300, 604800, 91287552, 685888171, 1805010948, 1877530740, 684173164, 57170880, 608583680, 5702382933, 19588944336, 28540603884, 16497874380, 2936606400, 68428800, 4107939840, 47168678571, 206254571236, 404562365316, 344901105444, 108502598960, 8099018496
Offset: 1

Author

Gheorghe Coserea, Nov 17 2018

Keywords

Comments

Row n contains floor((n+1)/2) = A008619(n-1) terms.

Examples

			Triangle starts:
n\k  [0]       [1]        [2]         [3]         [4]        [5]
[1]  1;
[2]  3;
[3]  12,       1;
[4]  56,       15;
[5]  288,      165,       8;
[6]  1584,     1611,      252;
[7]  9152,     14805,     4956,       180;
[8]  54912,    131307,    77992,      9132;
[9]  339456,   1138261,   1074564,    268980,     8064;
[10] 2149888,  9713835,   13545216,   6010220,    579744;
[11] 13891584, 81968469,  160174960,  112868844,  23235300,  604800;
[12] 91287552, 685888171, 1805010948, 1877530740, 684173164, 57170880;
[13] ...
		

Crossrefs

Columns k=0..9 give: A000257 (k=0), A118093 (k=1), A214817 (k=2), A214818 (k=3), A318104 (k=4), A321705 (k=5), A321706 (k=6), A321707 (k=7), A321708 (k=8), A321709 (k=9).
Row sums give A003319(n+1).

Programs

  • Mathematica
    l1[f_,n_] := Sum[(i-1)t[i]D[f,t[i-1]], {i,2,n}];
    m1[f_,n_] := Sum[(i-1)t[j]t[i-j]D[f,t[i-1]] + j(i-j)t[i+1]D[f,t[j],t[i-j]], {i,2,n},{j,i-1}];
    ff[1] = x^2 t[1];
    ff[n_] := ff[n] = Simplify@(2x l1[ff[n-1],n] + m1[ff[n-1],n] + Sum[t[i+1]j(i-j)D[ff[k],t[j]]D[ff[n-1-k],t[i-j]], {i,2,n-1},{j,i-1},{k,n-2}]) / n;
    row[n_]:=Reverse[CoefficientList[n ff[n] /. {t[_]->x}, x]][[;;;;2]][[;;Quotient[n+1,2]]];
    Table[row[n], {n,14}] (* Andrei Zabolotskii, Jun 27 2025, after the PARI code *)
  • PARI
    L1(f, N) = sum(i=2, N, (i-1)*t[i]*deriv(f, t[i-1]));
    M1(f, N) = {
      sum(i=2, N, sum(j=1, i-1, (i-1)*t[j]*t[i-j]*deriv(f, t[i-1]) +
          j*(i-j)*t[i+1]*deriv(deriv(f, t[j]), t[i-j])));
    };
    F(N) = {
      my(u='x, v='x, f=vector(N)); t=vector(N+1, n, eval(Str("t", n)));
      f[1] = u*v*t[1];
      for (n=2, N, f[n] = (u + v)*L1(f[n-1], n) + M1(f[n-1], n) +
        sum(i=2, n-1, t[i+1]*sum(j=1, i-1,
        j*(i-j)*sum(k=1, n-2, deriv(f[k], t[j])*deriv(f[n-1-k], t[i-j]))));
        f[n] /= n);
      f;
    };
    seq(N) = {
      my(f=F(N), v=substvec(f, t, vector(#t, n, 'x)),
         g=vector(#v, n, Polrev(Vec(n * v[n]))));
      apply(p->Vecrev(substpol(p, 'x^2, 'x)), g);
    };
    concat(seq(14))

Formula

A000257(n)=T(n,0), A118093(n)=T(n,1), A214817(n)=T(n,2), A214818(n)=T(n,3), A060593(n)=T(2*n+1,n)=(2*n)!/(n+1), A003319(n+1)=Sum_{k=0..floor((n-1)/2)} T(n,k).