cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A321710 Triangle read by rows: T(n,k) is the number of rooted hypermaps of genus k with n darts.

Original entry on oeis.org

1, 3, 12, 1, 56, 15, 288, 165, 8, 1584, 1611, 252, 9152, 14805, 4956, 180, 54912, 131307, 77992, 9132, 339456, 1138261, 1074564, 268980, 8064, 2149888, 9713835, 13545216, 6010220, 579744, 13891584, 81968469, 160174960, 112868844, 23235300, 604800, 91287552, 685888171, 1805010948, 1877530740, 684173164, 57170880, 608583680, 5702382933, 19588944336, 28540603884, 16497874380, 2936606400, 68428800, 4107939840, 47168678571, 206254571236, 404562365316, 344901105444, 108502598960, 8099018496
Offset: 1

Views

Author

Gheorghe Coserea, Nov 17 2018

Keywords

Comments

Row n contains floor((n+1)/2) = A008619(n-1) terms.

Examples

			Triangle starts:
n\k  [0]       [1]        [2]         [3]         [4]        [5]
[1]  1;
[2]  3;
[3]  12,       1;
[4]  56,       15;
[5]  288,      165,       8;
[6]  1584,     1611,      252;
[7]  9152,     14805,     4956,       180;
[8]  54912,    131307,    77992,      9132;
[9]  339456,   1138261,   1074564,    268980,     8064;
[10] 2149888,  9713835,   13545216,   6010220,    579744;
[11] 13891584, 81968469,  160174960,  112868844,  23235300,  604800;
[12] 91287552, 685888171, 1805010948, 1877530740, 684173164, 57170880;
[13] ...
		

Crossrefs

Columns k=0..9 give: A000257 (k=0), A118093 (k=1), A214817 (k=2), A214818 (k=3), A318104 (k=4), A321705 (k=5), A321706 (k=6), A321707 (k=7), A321708 (k=8), A321709 (k=9).
Row sums give A003319(n+1).

Programs

  • Mathematica
    l1[f_,n_] := Sum[(i-1)t[i]D[f,t[i-1]], {i,2,n}];
    m1[f_,n_] := Sum[(i-1)t[j]t[i-j]D[f,t[i-1]] + j(i-j)t[i+1]D[f,t[j],t[i-j]], {i,2,n},{j,i-1}];
    ff[1] = x^2 t[1];
    ff[n_] := ff[n] = Simplify@(2x l1[ff[n-1],n] + m1[ff[n-1],n] + Sum[t[i+1]j(i-j)D[ff[k],t[j]]D[ff[n-1-k],t[i-j]], {i,2,n-1},{j,i-1},{k,n-2}]) / n;
    row[n_]:=Reverse[CoefficientList[n ff[n] /. {t[_]->x}, x]][[;;;;2]][[;;Quotient[n+1,2]]];
    Table[row[n], {n,14}] (* Andrei Zabolotskii, Jun 27 2025, after the PARI code *)
  • PARI
    L1(f, N) = sum(i=2, N, (i-1)*t[i]*deriv(f, t[i-1]));
    M1(f, N) = {
      sum(i=2, N, sum(j=1, i-1, (i-1)*t[j]*t[i-j]*deriv(f, t[i-1]) +
          j*(i-j)*t[i+1]*deriv(deriv(f, t[j]), t[i-j])));
    };
    F(N) = {
      my(u='x, v='x, f=vector(N)); t=vector(N+1, n, eval(Str("t", n)));
      f[1] = u*v*t[1];
      for (n=2, N, f[n] = (u + v)*L1(f[n-1], n) + M1(f[n-1], n) +
        sum(i=2, n-1, t[i+1]*sum(j=1, i-1,
        j*(i-j)*sum(k=1, n-2, deriv(f[k], t[j])*deriv(f[n-1-k], t[i-j]))));
        f[n] /= n);
      f;
    };
    seq(N) = {
      my(f=F(N), v=substvec(f, t, vector(#t, n, 'x)),
         g=vector(#v, n, Polrev(Vec(n * v[n]))));
      apply(p->Vecrev(substpol(p, 'x^2, 'x)), g);
    };
    concat(seq(14))

Formula

A000257(n)=T(n,0), A118093(n)=T(n,1), A214817(n)=T(n,2), A214818(n)=T(n,3), A060593(n)=T(2*n+1,n)=(2*n)!/(n+1), A003319(n+1)=Sum_{k=0..floor((n-1)/2)} T(n,k).
Showing 1-1 of 1 results.