cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Evgeniy Krasko

Evgeniy Krasko's wiki page.

Evgeniy Krasko has authored 23 sequences. Here are the ten most recent ones:

A322918 a(n) is the number of rooted 6-regular maps with n vertices on the torus.

Original entry on oeis.org

10, 800, 58000, 4080000, 283100000, 19496000000, 1336380000000, 91320000000000, 6226591000000000, 423871680000000000
Offset: 1

Author

Evgeniy Krasko, Dec 30 2018

Keywords

A322929 a(n) is the number of rooted 5-regular maps with 2n vertices on the projective plane.

Original entry on oeis.org

215, 106820, 65476730, 44355884860, 31871222091735, 23809740820038860, 18286634336378438820, 14338651143931504204140, 11425366917170617116755180, 9221856681066077433854516240
Offset: 1

Author

Evgeniy Krasko, Dec 31 2018

Keywords

A322928 a(0)=1; for n>0, a(n) is the number of rooted 3-regular maps with 2n vertices on the projective plane.

Original entry on oeis.org

1, 9, 118, 1773, 28650, 484578, 8457708, 151054173, 2745685954, 50606020854, 943283037684, 17746990547634, 336517405188900, 6423775409047716, 123332141503711704, 2379824766494404317, 46124764901514110898, 897483137740689843054, 17524230350476917414180
Offset: 0

Author

Evgeniy Krasko, Dec 31 2018

Keywords

Crossrefs

Cf. A002005 (genus 0)

Programs

  • Maple
    A[0]:= 1: A[1]:= 9: A[2]:= 118: A[3]:= 1773: A[4]:= 28650: A[5]:= 484578:
    for n from 6 to 20 do
      A[n]:= 995328*(n - 4)*(3*n - 16)*(3*n - 14)*(3*n - 10)*(3*n - 8)*A[n - 6]/((n - 3)*(n - 2)*(n - 1)*n*(n + 1)) - 576*(3*n - 10)*(3*n - 8)*(108*n^2 - 648*n + 1049)*A[n - 4]/((n - 2)*(n - 1)*n*(n + 1)) + 12*(108*n^2 - 432*n + 505)*A[n - 2]/(n*(n + 1))
    od:
    seq(A[i],i=0..20); # Robert Israel, Dec 30 2022
  • Mathematica
    a[n_] := -((2^(2 n + 1) (3 n)!!)/((n + 1)! n!!)) + (3 2^(2 n))/(n + 1)!! Sum[(3^k (2 k - 1)!! (3 n - 2 k - 1)!!)/(2^k k! (n - k)!), {k, 0, n}];
    Table[a[n], {n, 0, 20}] (* Andrey Zabolotskiy, Dec 29 2022 *)

Formula

Theorem 3.3 gives an explicit formula.
From Vaclav Kotesovec, Dec 30 2022: (Start)
Recurrence: (n-3)*(n-2)*(n-1)*n*(n+1)*a(n) = 12*(n-3)*(n-2)*(n-1)*(108*n^2 - 432*n + 505)*a(n-2) - 576*(n-3)*(3*n - 10)*(3*n - 8)*(108*n^2 - 648*n + 1049)*a(n-4) + 995328*(n-4)*(3*n - 16)*(3*n - 14)*(3*n - 10)*(3*n - 8)*a(n-6).
a(n) ~ Gamma(1/4) * 2^(2*n - 5/4) * 3^(3*n/2 + 5/4) / (Pi * n^(5/4)) * (1 - 2^(7/4)*sqrt(Pi)/(Gamma(1/4)*3^(3/4)*n^(1/4)) + Pi/(Gamma(1/4)^2*sqrt(3*n))).
(End)

Extensions

Added initial term a(0)=1 to match Taylor series expansion in Theorem 3.3. - N. J. A. Sloane, Jan 11 2019
Terms a(11) and beyond from Andrey Zabolotskiy, Dec 29 2022

A322914 a(0)=0; for n>0, a(n) is the number of rooted 4-regular maps on the torus having n vertices.

Original entry on oeis.org

0, 1, 15, 198, 2511, 31266, 385398, 4721004, 57590271, 700465482, 8501284530, 103007201364, 1246500179910, 15068548264212, 182007001727244, 2196875784339288, 26501619841355871, 319541469851970522, 3851239987536347034, 46399926869155488708, 558853144337650364226
Offset: 0

Author

Evgeniy Krasko, Dec 30 2018

Keywords

Programs

  • Magma
    DoubleFactorial:=func< n | &*[n..2 by -2] >; [ 6^(n-1)*(2^n -(DoubleFactorial(2*n-1))/Factorial(n)): n in [0..28] ]; // Vincenzo Librandi, Jan 10 2020
  • Mathematica
    CoefficientList[Series[(1/6) (1/(1 - 12 x) - 1/Sqrt[1 - 12 x]), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 10 2020 *)

Formula

a(n) = 6^(n-1)*(2^n - (2*n-1)!!/n!) for n>0.
G.f.: (1/6)*(1/(1-12*x)-1/sqrt(1-12*x)).
D-finite with recurrence: n*a(n) +6*(-4*n+3)*a(n-1) +72*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 09 2020

Extensions

Added initial 0 to match generating function and Taylor series in Theorem 2.1. - N. J. A. Sloane, Jan 11 2019

A322930 a(n) is the number of rooted 6-regular maps with n vertices on the projective plane.

Original entry on oeis.org

22, 864, 40512, 2075860, 112225776, 6289396632, 361699896960, 21210328632420, 1262859239910000, 76114899842912520
Offset: 1

Author

Evgeniy Krasko, Dec 31 2018

Keywords

A322917 a(n) is the number of rooted 5-regular maps with 2n vertices on the torus.

Original entry on oeis.org

120, 125280, 120800160, 113579366400, 105549958379520, 97452182769223680, 89611995665911173120, 82178813933957614141440, 75217069050598359088496640, 68747100051073934332046868480
Offset: 1

Author

Evgeniy Krasko, Dec 30 2018

Keywords

A297881 Number of unsensed genus 5 maps with n edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1491629, 195728778, 14019733828, 724646387874, 30220873171570, 1079253898643492, 34231899372185491, 988157793188200998, 26412878913430197293, 662133032168309300424, 15719783014093104131694
Offset: 0

Author

Evgeniy Krasko, Jan 07 2018

Keywords

Crossrefs

Column k=5 of A379439.
Cf. A238355 (rooted), A239918 (sensed).

A297880 Number of unsensed genus 4 maps with n edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 7258, 688976, 37466297, 1512650776, 50355225387, 1461269893538, 38236656513725, 922552326544030, 20847359639841664, 446290728182323620, 9129236228868478458, 179639607187998993180, 3418366706444416598777
Offset: 0

Author

Evgeniy Krasko, Jan 07 2018

Keywords

Crossrefs

Column k=4 of A379439.
Cf. A215402 (rooted), A215019 (sensed).

Extensions

a(20) added by Andrew Howroyd, Jan 20 2025

A292974 Number of 6-regular maps with n vertices on the torus, up to orientation-preserving isomorphisms.

Original entry on oeis.org

3, 81, 3313, 171282, 9444158, 541659909, 31819176850, 1902508129720, 115307287484560, 7064528615347192, 436658221692698200, 27188662712300575980, 1703444238720524912060
Offset: 1

Author

Evgeniy Krasko, Sep 27 2017

Keywords

Crossrefs

Cf. A292408 (3-regular), A292971 (4-regular), A292972 (5-regular).

A292972 Number of 5-regular maps with 2n vertices on the torus, up to orientation-preserving isomorphisms.

Original entry on oeis.org

15, 6423, 4031952, 2839677570, 2111005408320, 1624203259187196, 1280171373413389056, 1027235174396893007472, 835745211680299639976976, 687471000510964612782875472
Offset: 1

Author

Evgeniy Krasko, Sep 27 2017

Keywords

Crossrefs

Cf. A292408 (3-regular), A292971 (4-regular), A292974 (6-regular).