A292408 Number of 3-regular maps with 2n vertices on the torus, up to orientation-preserving isomorphisms.
1, 5, 46, 669, 11096, 196888, 3596104, 66867564, 1258801076, 23925376862, 458284630844, 8835496339452, 171286387714900, 3336406717216564, 65257828878990784, 1281049596756607960, 25228921286295314736, 498287389997552607290, 9866927329534881618772, 195837489338961245840240
Offset: 1
Keywords
Links
- E. Krasko, A. Omelchenko, Enumeration of r-regular Maps on the Torus. Part I: Enumeration of Rooted and Sensed Maps, arXiv preprint arXiv:1709.03225[math.CO], 2017.
- E. Krasko, A. Omelchenko, Enumeration of r-regular maps on the torus. Part I: Rooted maps on the torus, the projective plane and the Klein bottle. Sensed maps on the torus, Discrete Mathematics, Volume 342, Issue 2, February 2019, pp. 584-599.
- Riccardo Murri, Fatgraph algorithms and the homology of the Kontsevich complex, arXiv preprint arXiv:1202.1820, 2012.