cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A006384 Number of sensed planar maps with n edges.

Original entry on oeis.org

1, 2, 4, 14, 57, 312, 2071, 15030, 117735, 967850, 8268816, 72833730, 658049140, 6074058060, 57106433817, 545532037612, 5284835906037, 51833908183164, 514019531037910, 5147924676612282, 52017438279806634, 529867070532745464
Offset: 0

Views

Author

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges. - Andrew Howroyd, Jan 13 2025

References

  • V. A. Liskovets, A census of nonisomorphic planar maps, in Algebraic Methods in Graph Theory, Vol. II, ed. L. Lovasz and V. T. Sos, North-Holland, 1981.
  • V. A. Liskovets, Enumeration of nonisomorphic planar maps, Selecta Math. Sovietica, 4 (No. 4, 1985), 303-323.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Antidiagonal sums of A379430.
Cf. A000168 (rooted), A006385 (unsensed), A006443 (achiral), A006402 (2-connected).

Programs

  • Maple
    with(numtheory): a:= n-> `if` (n=0, 1, floor (2*3^n /(n+1)/(n+2) *binomial(2*n, n) +add (phi(n/t) *3^t *binomial(2*t, t), t=divisors(n) minus {n}))/2/n +`if` (irem(n,2)=1, 2*3^((n-1)/2) /(n+1) *binomial(n-1, (n-1)/2), 2*(n-1) *3^((n-2)/2) /n/(n+2) *binomial(n-2, (n-2)/2))): seq (a(n), n=0..30); # Alois P. Heinz, Apr 24 2009
  • Mathematica
    a[0] = 1; a[n_] := (1/(2n))*(2*(3^n/((n+1)*(n+2)))*Binomial[2n, n] + Sum[ EulerPhi[n/k]*3^k*Binomial[ 2k, k], {k, Most[ Divisors[n]]}]) + q[n]; q[n_?OddQ] := 2*(3^((n-1)/2)/(n+1))*Binomial[ n-1, (n-1)/2]; q[n_?EvenQ] := 2*(n-1)*(3^((n-2)/2)/(n*(n+2)))*Binomial[ n-2, (n-2)/2]; Table[ a[n], {n, 0, 21}] (* Jean-François Alcover, after Valery A. Liskovets *)

Formula

For n>0, a(n) = (1/2n)[A'(n)+sum_{kA000010, q(n)=(n+3) A'(n-1/2)/4 if n is odd and q(n) = (n-1)A'(n-2/2)/4 if n is even, where A'(n)=A000168(n), the number of rooted maps. - Valery A. Liskovets, May 27 2006
Equivalently, a(n) = (1/2n)[2*3^n/((n+1)(n+2))*binomial(2n,n) +sum_{kValery A. Liskovets, May 27 2006
a(n) ~ 12^n / (sqrt(Pi) * n^(7/2)). - Vaclav Kotesovec, Sep 12 2014

Extensions

More terms from Alois P. Heinz, Apr 24 2009

A379439 Triangle read by rows: T(n,k) is the number of unsensed combinatorial maps with n edges and genus k, 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 2, 4, 1, 14, 6, 52, 40, 4, 248, 320, 76, 1416, 2946, 1395, 82, 9172, 29364, 24950, 4348, 66366, 309558, 427336, 160050, 7258, 518868, 3365108, 6987100, 4696504, 688976, 4301350, 37246245, 109761827, 118353618, 37466297, 1491629, 37230364, 416751008, 1668376886, 2675297588, 1512650776, 195728778
Offset: 0

Views

Author

Andrew Howroyd, Jan 16 2025

Keywords

Examples

			Triangle begins:
  n\k     [0]      [1]      [2]      [3]     [4]
  [0]      1;
  [1]      2;
  [2]      4,       1;
  [3]     14,       6;
  [4]     52,      40,       4;
  [5]    248,     320,      76;
  [6]   1416,    2946,    1395,      82;
  [7]   9172,   29364,   24950,    4348;
  [8]  66366,  309558,  427336,  160050,   7258;
  [9] 518868, 3365108, 6987100, 4696504, 688976;
		

Crossrefs

Row sums are A214816.
Cf. A269919 (rooted), A379438 (sensed), A380234 (achiral), A380235.

Formula

T(n,k) = (A379438(n,k) + A380234(n,k))/2.

A214816 Number of unsensed combinatorial maps with n edges on an orientable surface of any genus.

Original entry on oeis.org

1, 2, 5, 20, 96, 644, 5839, 67834, 970568, 16256556, 308620966, 6506035400, 150358570914, 3775903806928, 102348067516576, 2977979542305736, 92579723269733557, 3062602106878957610, 107418879166917701583, 3981908920500346885116, 155550644128029095714786
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2012

Keywords

Crossrefs

Row sums of A379439.
Cf. A006385, A006387, A170946 (sensed), A170947 (achiral), A170948 (chiral pairs), A214814, A214815, A297880, A297881, A348798, A348800, A348801.

Formula

a(n) = (A170946(n) + A170947(n)) / 2. [Breda d'Azevedo, Mednykh & Nedela, Corollary 4.7] - Andrey Zabolotskiy, Jun 06 2024

Extensions

a(12)-a(18) from Andrey Zabolotskiy, Jun 06 2024
a(19) onwards from Andrew Howroyd, Jan 27 2025

A006387 Number of unsensed genus 1 maps with n edges.

Original entry on oeis.org

0, 0, 1, 6, 40, 320, 2946, 29364, 309558, 3365108, 37246245, 416751008, 4696232371, 53186743416, 604690121555, 6896534910612, 78867385697513, 904046279771682, 10384916465797240, 119522063788612992, 1378014272286250059
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=1 of A379439.
Cf. A006300 (rooted), A006385 (planar), A006386 (sensed), A214814, A214815, A214816.

Extensions

a(12)-a(20) from Evgeniy Krasko, Sep 17 2017

A214814 Number of unsensed genus 2 maps with n edges.

Original entry on oeis.org

0, 0, 0, 0, 4, 76, 1395, 24950, 427336, 6987100, 109761827, 1668376886, 24689351504, 357467967214, 5083309341304, 71209097157108, 984963603696282, 13477371260785608, 182698708325667710, 2456600457435363198, 32796863046711248526
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2012

Keywords

Crossrefs

Column k=2 of A379439.
Cf. A006301 (rooted), A104595 (sensed).

Extensions

More terms from Evgeniy Krasko, Sep 17 2017

A214815 Number of unsensed genus 3 maps with n edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 82, 4348, 160050, 4696504, 118353618, 2675297588, 55758114082, 1091344752470, 20318440463052, 363171011546210, 6275111078422480, 105369657960443204, 1726590417107274316, 27699670730854989616, 436246336648672487876
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2012

Keywords

Crossrefs

Column k=3 of A379439.
Cf. A104742 (rooted), A104596 (sensed).

Extensions

More terms from Evgeniy Krasko, Sep 17 2017

A277741 Array read by antidiagonals: A(n,k) is the number of unsensed planar maps with n vertices and k faces, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 13, 20, 13, 3, 6, 35, 83, 83, 35, 6, 12, 104, 340, 504, 340, 104, 12, 27, 315, 1401, 2843, 2843, 1401, 315, 27, 65, 1021, 5809, 15578, 21420, 15578, 5809, 1021, 65, 175, 3407, 24299, 82546, 149007, 149007, 82546, 24299, 3407, 175
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2016

Keywords

Comments

A(n,k) is also the number of multiquadrangulations of the sphere with n stable equilibria and k unstable equilibria.
From Andrew Howroyd, Jan 13 2025: (Start)
The planar maps considered are connected and may contain loops and parallel edges.
The number of edges is n + k - 2. (End)

Examples

			The array begins:
   1,    1,    1,     2,     3,     6,   12,   27, 65, ...
   1,    2,    5,    13,    35,   104,  315, 1021, ...
   1,    5,   20,    83,   340,  1401, 5809, ...
   2,   13,   83,   504,  2843, 15578, ...
   3,   35,  340,  2843, 21420, ...
   6,  104, 1401, 15578, ...
  12,  315, 5809, ...
  27, 1021, ...
  65, ...
  ...
As a triangle, rows give the number of edges (first row is 0 edges):
   1;
   1,    1;
   1,    2,    1;
   2,    5,    5,     2;
   3,   13,   20,    13,     3;
   6,   35,   83,    83,    35,    6;
  12,  104,  340,   504,   340,   104,   12;
  27,  315, 1401,  2843,  2843,  1401,  315,   27;
  65, 1021, 5809, 15578, 21420, 15578, 5809, 1021, 65;
  ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, chapter 5.

Crossrefs

Antidiagonal sums are A006385.
Rows 1..2 (equally, columns 1..2) are A006082, A380239.
Cf. A269920 (rooted), A379430 (sensed), A379431 (achiral), A379432 (2-connected), A384963 (simple).

Formula

A(n,k) = A(k,n).
A(n,k) = (A379430(n,k) + A379431(n,k))/2. - Andrew Howroyd, Jan 14 2025

Extensions

Missing terms inserted and definition edited by Andrew Howroyd, Jan 13 2025

A297880 Number of unsensed genus 4 maps with n edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 7258, 688976, 37466297, 1512650776, 50355225387, 1461269893538, 38236656513725, 922552326544030, 20847359639841664, 446290728182323620, 9129236228868478458, 179639607187998993180, 3418366706444416598777
Offset: 0

Views

Author

Evgeniy Krasko, Jan 07 2018

Keywords

Crossrefs

Column k=4 of A379439.
Cf. A215402 (rooted), A215019 (sensed).

Extensions

a(20) added by Andrew Howroyd, Jan 20 2025

A006443 Number of achiral planar maps with n edges.

Original entry on oeis.org

1, 2, 4, 14, 47, 184, 761, 3314, 14997, 69886, 333884, 1626998, 8067786, 40580084, 206734083, 1064666724, 5536480877, 29036188788, 153450351924, 816503772830, 4371551433888
Offset: 0

Views

Author

Keywords

Comments

An achiral map is a map with a sense-reversing automorphism.
The planar maps considered are connected and may contain loops and parallel edges. - Andrew Howroyd, Jan 13 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=0 of A380234.
Cf. A006384 (sensed), A006385 (unsensed), A006444 (2-connected), A006445 (3-connected).

Formula

a(n) = 2*A006385(n) - A006384(n). [Liskovets eq 3a] - R. J. Mathar, Oct 01 2011

Extensions

a(0)=1 prepended by Andrew Howroyd, Jan 13 2025
a(20) added by Andrew Howroyd, Jan 20 2025

A006389 Number of unsensed planar maps with n edges and without faces of degree 1.

Original entry on oeis.org

1, 1, 2, 6, 18, 68, 313, 1592, 9187, 57451, 384450, 2703970, 19769311
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006385, A006388 (sensed), A379433 (rooted).

Extensions

a(8)-a(12) from Sean A. Irvine, Mar 28 2017
a(0)=1 prepended by Andrew Howroyd, Jan 16 2025
Showing 1-10 of 21 results. Next