Valery A. Liskovets has authored 118 sequences. Here are the ten most recent ones:
A124092
From a question about accepting states in certain finite automata.
Original entry on oeis.org
1, 7, 98, 1020, 10160, 89960, 780368, 6419109
Offset: 0
A118447
Number of rooted n-edge one-vertex maps on the Klein bottle (dually: one-face maps).
Original entry on oeis.org
4, 42, 304, 1870, 10488, 55412, 280768, 1379286, 6616360, 31144300, 144367584, 660746892, 2991902704, 13424189160, 59758420736, 264191654758, 1160934273288, 5074150057916, 22071747625120, 95596117130724
Offset: 2
- E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
- D. M. Jackson and T. I. Visentin, An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press, Boca Raton, 2001.
-
((R - 1)^2 (R + 1) (R + 3)/(8 R^5) /. R -> Sqrt[1 - 4x]) + O[x]^22 // CoefficientList[#, x]& // Drop[#, 2]& (* Jean-François Alcover, Aug 28 2019 *)
A118450
Number of rooted n-edge one-vertex one-face maps on a non-orientable surface (of genus n).
Original entry on oeis.org
1, 4, 41, 488, 8229, 164892, 4016613, 112818960
Offset: 1
- E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
- D. M. Jackson and T. I. Visentin, An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press, Boca Raton, 2001.
A118445
Number of tree-rooted maps of genus 1 with n edges: rooted maps on the torus with a distinguished spanning tree.
Original entry on oeis.org
1, 25, 490, 8820, 152460, 2576574, 42942900, 709171320, 11636856660, 190068658780, 3093732938296, 50222937310000, 813611584422000, 13158602740363500, 212528020730913000, 3428785401125396400, 55266606794455402500, 890117467077758188500
Offset: 2
- E. A. Bender, E. R. Canfield and R. W. Robinson, The asymptotic number of tree-rooted maps on a surface, J. Comb. Theory, Ser. A, 48, No. 2 (1988), 156-164.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. II, J. Comb. Theory, Ser. B, 13, No. 2 (1972), 122-141 (pp. 137, 140).
-
HypergeometricPFQ[{5/2, 5/2}, {4}, 16x] + O[x]^18 // CoefficientList[#, x]& (* Jean-François Alcover, Aug 28 2019 *)
Table[n*(n-1) * Binomial[2*n,n]^2 / (24*(n+1)), {n, 2, 20}] (* Vaclav Kotesovec, Feb 17 2024 *)
A118446
Number of tree-rooted maps of genus 2 with n edges: rooted maps with a distinguished spanning tree on an orientable surface of genus 2.
Original entry on oeis.org
21, 1428, 59136, 1936935, 55165110, 1430857428, 34701610944, 800003272068, 17726513264460, 380471504212800, 7955313269904000, 162738137109652650, 3267801532548762300, 64578810084245919000, 1258643138633207712000, 24234564983959535297400, 461636913607179055445700
Offset: 4
- E. A. Bender, E. R. Canfield and R. W. Robinson, The asymptotic number of tree-rooted maps on a surface, J. Comb. Theory, Ser. A, 48, No. 2 (1988), 156-164.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. II, J. Comb. Theory, Ser. B, 13, No. 2 (1972), 122-141 (pp. 137, 140).
-
C := proc(n) binomial(2*n,n)/(n+1) end:
b := proc(n) options remember;
if n<4 then 0 elif n=4 then 21 else
((5*(n-1)+3)*(4*(n-1)+2)*b(n-1))/((5*(n-1)-2)*(n-1-3))
fi
end:
seq(add(binomial(2*n,2*i)*C(i)*b(n-i), i=0..n), n=4..20);
# Mark van Hoeij, Apr 06 2013
-
a[n_] := 2^(4n-9)(n-2)(5n^2+n+6) Gamma[n-3/2] Gamma[n+1/2]/(45 Pi (n-4)! (n+1)! );
Table[a[n], {n, 4, 20}] (* Jean-François Alcover, Aug 28 2019 *)
-
C(n) = binomial(2*n, n)/(n+1);
A006298(n) = if(n<4,0,if(n==4,21,((5*(n-1)+3)*(4*(n-1)+2)*A006298(n-1))/((5*(n-1)-2)*((n-1)-3))));
b(n)=A006298(n);
a(n)=sum(k=0,n, binomial(2*n,2*k) * C(k) * b(n-k) );
/* Joerg Arndt, Apr 07 2013 */
A118449
Number of rooted n-edge one-vertex maps on a non-orientable genus-4 surface (dually: one-face maps).
Original entry on oeis.org
0, 488, 11660, 160680, 1678880, 14771680, 115457832, 827303280, 5545466520, 35257287120, 214730922120, 1262004908528, 7197437563680, 40007524376960, 217501266966160, 1159737346931040, 6079078540464072, 31385516059734960
Offset: 3
- E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
- D. M. Jackson and T. I. Visentin, An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press, Boca Raton, 2001.
-
With[{r=Sqrt[1-4x]},Drop[CoefficientList[Series[-(r-1)^4 (r+1)^3 (65r^3+ 337r^2- 433r-945)/(256r^11),{x,0,20}],x],3]] (* Harvey P. Dale, Aug 05 2019 *)
A118451
Number of rooted n-edge maps on a non-orientable genus-3 surface.
Original entry on oeis.org
41, 1380, 31225, 592824, 10185056, 164037704, 2525186319, 37596421940, 545585129474, 7758174844664, 108518545261360, 1497384373878512, 20426386710028260, 275940187259609296, 3696482210884173349
Offset: 3
- E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
- D. M. Jackson and T. I. Visentin, An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press, Boca Raton, 2001.
-
R := sqrt(1-12*x) ;
(R-1)*(R+1)*(68*R^5+280*R^4+588*R^3+808*R^2+416*R -(28*R^4+59*R^3+114*R^2+119*R+40)*sqrt(12*R*(R+2)))/96/R^5/(R+2)^3 ;
g := series(%,x=0,101) ;
for n from 3 to 100 do
printf("%d %d\n",n,coeftayl(g,x=0,n)) ;
end do: # R. J. Mathar, Oct 17 2012
-
R = Sqrt[1-12x];
(R-1)(R+1)(68R^5 + 280R^4 + 588R^3 + 808R^2 + 416R - (28R^4 + 59R^3 + 114R^2 + 119R + 40) Sqrt[12R(R+2)])/96/R^5/(R+2)^3 + O[x]^18 // CoefficientList[#, x]& // Drop[#, 3]& (* Jean-François Alcover, Aug 28 2019 *)
A118448
Number of rooted n-edge one-vertex maps on a non-orientable genus-3 surface (dually: one-face maps).
Original entry on oeis.org
41, 690, 7150, 58760, 420182, 2736524, 16661580, 96411060, 536075430, 2886649260, 15139322276, 77665981120, 391031449340, 1937266785080, 9464122525784, 45670084085004, 218002466412870, 1030588793671980
Offset: 3
- E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
- D. M. Jackson and T. I. Visentin, An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press, Boca Raton, 2001.
-
((R-1)^3 (R+1)^2 (11 R^2 - 29 R - 64)/(64 R^8) /. R -> Sqrt[1-4x]) + O[x]^21 // CoefficientList[#, x]& // Drop[#, 3]& (* Jean-François Alcover, Aug 29 2019 *)
A118095
Number of unrooted regular odd-valent planar maps with 8 vertices; maps are considered up to orientation-preserving homeomorphisms and the vertices are of valency 2n+1.
Original entry on oeis.org
0, 191, 39670362, 4742588317460, 457373823022288900, 39758207592119720043060, 3253001744463113558023410456, 255859318139167527752722081113072
Offset: 0
A118094
Numbers of unrooted hypermaps on the torus with n darts up to orientation-preserving homeomorphism (darts are semi-edges in the particular case of ordinary maps).
Original entry on oeis.org
1, 6, 33, 285, 2115, 16533, 126501, 972441, 7451679, 57167260, 438644841, 3369276867, 25905339483, 199408447446, 1536728368389, 11856420991413, 91579955286519, 708146055343668, 5481535740059577, 42473608898628639
Offset: 3
- A. Mednykh and R. Nedela, Counting unrooted hypermaps on closed orientable surface, 18th Intern. Conf. Formal Power Series & Algebr. Comb., Jun 19, 2006, San Diego, California (USA).
- A. Mednykh and R. Nedela, Enumeration of unrooted hypermaps of a given genus, Discr. Math., 310 (2010), 518-526. [From _N. J. A. Sloane_, Dec 19 2009]
- Mednykh, A.; Nedela, R. Recent progress in enumeration of hypermaps, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 3.
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- T. R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3
-
Phi2 := proc(l)
local a,k ;
a := 0 ;
for k in numtheory[divisors](l) do
a := a+numtheory[mobius](l/k)*k^2 ;
end do:
a ;
end proc:
h0 := proc(m)
if type(m,integer) then
binomial(2*m,m)*3*2^(m-1)/(m+1)/(m+2) ;
else
0;
end if;
end proc:
h1 := proc(n)
local a;
a := 0 ;
if n >= 3 and type(n,integer) then
a := add(2^k*(4^(n-2-k)-1)*binomial(n+k,k),k=0..n-3) ;
end if;
a/3 ;
end proc:
A118094 := proc(n)
binomial(n/2+2,4)*h0(n/2) ;
%+2*binomial(n/3+2,3)*h0(n/3) ;
%+6*binomial(n/4+2,3)*h0(n/4) ;
a := %+12*binomial(n/6+2,3)*h0(n/6) ;
for l in numtheory[divisors](n) do
if modp(n,l) = 0 then
a := a+h1(n/l)*Phi2(l) ;
end if;
end do:
a/n ;
end proc:
seq(A118094(n),n=3..14) ; # R. J. Mathar, Dec 17 2014
-
h0[n_] := If[Denominator[n] == 1, 3*2^(n-1)*Binomial[2*n, n]/((n+1)*(n+2)), 0]; h1[n_] := Sum[(4^(n-2-k)-1)*Binomial[n+k, k]*2^k, {k, 0, n-3}]/3; phi2[n_] := Sum[MoebiusMu[n/d]*d^2, {d, Divisors[n]}]; a[n_] := (Binomial[n/2+2, 4]*h0[n/2] + 2*Binomial[n/3+2, 3]*h0[n/3]+6*Binomial[n/4+2, 3]*h0[n/4] + 12*Binomial[n/6+2, 3]*h0[n/6] + Sum[ phi2[d]*h1[n/d], {d, Divisors[n]}])/n; Table[a[n], {n, 3, 22}] (* Jean-François Alcover, Dec 18 2014, translated from PARI *)
-
h0(n) = if(denominator(n)==1, 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)), 0);
h1(n) = sum(k=0, n-3, (4^(n-2-k)-1)*binomial(n+k, k)<Michel Marcus, Dec 11 2014 ; corrected by Charles R Greathouse IV, Dec 17 2014
Comments