cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Valery A. Liskovets

Valery A. Liskovets's wiki page.

Valery A. Liskovets has authored 118 sequences. Here are the ten most recent ones:

A124092 From a question about accepting states in certain finite automata.

Original entry on oeis.org

1, 7, 98, 1020, 10160, 89960, 780368, 6419109
Offset: 0

Author

Valery A. Liskovets, Nov 27 2006

Keywords

A118447 Number of rooted n-edge one-vertex maps on the Klein bottle (dually: one-face maps).

Original entry on oeis.org

4, 42, 304, 1870, 10488, 55412, 280768, 1379286, 6616360, 31144300, 144367584, 660746892, 2991902704, 13424189160, 59758420736, 264191654758, 1160934273288, 5074150057916, 22071747625120, 95596117130724
Offset: 2

Author

Valery A. Liskovets, May 04 2006

Keywords

Comments

One-vertex maps on the projective plane are counted by A000346 and one-vertex maps on a non-orientable genus-3 surface by A118448. Such maps are also called bouquets of loops (and their duals are called unicellular maps).

References

  • E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
  • D. M. Jackson and T. I. Visentin, An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press, Boca Raton, 2001.

Programs

  • Mathematica
    ((R - 1)^2 (R + 1) (R + 3)/(8 R^5) /. R -> Sqrt[1 - 4x]) + O[x]^22 // CoefficientList[#, x]& // Drop[#, 2]& (* Jean-François Alcover, Aug 28 2019 *)

Formula

O.g.f.: (R-1)^2(R+1)(R+3)/8R^5, where R=sqrt(1-4x).
Conjecture: -(n-2)*(n-1)^2*a(n) +2*n*(4*n-5)*(n-2)*a(n-1) -8*n*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jun 22 2016
a(n) ~ n^(3/2) * 2^(2*n-1) / sqrt(Pi) * (1 - sqrt(Pi/n)/2). - Vaclav Kotesovec, Aug 28 2019

A118450 Number of rooted n-edge one-vertex one-face maps on a non-orientable surface (of genus n).

Original entry on oeis.org

1, 4, 41, 488, 8229, 164892, 4016613, 112818960
Offset: 1

Author

Valery A. Liskovets, May 04 2006

Keywords

Comments

One-vertex one-face maps on orientable surfaces are counted by A035319.

References

  • E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
  • D. M. Jackson and T. I. Visentin, An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press, Boca Raton, 2001.

Crossrefs

Main diagonal of A267180.
Cf. A035319.

Extensions

a(7)-a(8) added by Andrew Howroyd, Jan 16 2022

A118445 Number of tree-rooted maps of genus 1 with n edges: rooted maps on the torus with a distinguished spanning tree.

Original entry on oeis.org

1, 25, 490, 8820, 152460, 2576574, 42942900, 709171320, 11636856660, 190068658780, 3093732938296, 50222937310000, 813611584422000, 13158602740363500, 212528020730913000, 3428785401125396400, 55266606794455402500, 890117467077758188500
Offset: 2

Author

Valery A. Liskovets, May 04 2006

Keywords

Comments

Tree-rooted planar maps are counted by A005568 and tree-rooted maps of (orientable) genus 2 by A118446. Typically, a(11) = 190068658780 = 2^2*5*7^2*11*13^2*17^2*19^2.

Programs

  • Mathematica
    HypergeometricPFQ[{5/2, 5/2}, {4}, 16x] + O[x]^18 // CoefficientList[#, x]& (* Jean-François Alcover, Aug 28 2019 *)
    Table[n*(n-1) * Binomial[2*n,n]^2 / (24*(n+1)), {n, 2, 20}] (* Vaclav Kotesovec, Feb 17 2024 *)

Formula

a(n) = binomial(2n, 0) C(0) b(n) + binomial(2n, 2) C(1) b(n-1) + binomial(2n, 4) C(2) b(n-2) + ... + binomial(2n, 2n) C(n) b(0), where C(n) = A000108(n) - n-th Catalan number and b(n) = (2n-1)!/(6(n-2)! (n-1)!) = A002802(n-2) - the number of toroidal one-vertex maps with n edges for n >= 2 and b(0) = b(1) = 0.
O.g.f.: x^2 * hypergeom([5/2, 5/2], [4], 16*x). - Mark van Hoeij, Apr 06 2013
D-finite with recurrence -(n+1)*(n-2)*a(n) +4*((2*n-1)^2)*a(n-1)=0. - R. J. Mathar, Jul 27 2022
From Vaclav Kotesovec, Feb 17 2024: (Start)
a(n) = n*(n-1) * binomial(2*n,n)^2 / (24*(n+1)).
a(n) ~ 2^(4*n-3)/(3*Pi). (End)

Extensions

Added more terms, Joerg Arndt, Apr 07 2013

A118446 Number of tree-rooted maps of genus 2 with n edges: rooted maps with a distinguished spanning tree on an orientable surface of genus 2.

Original entry on oeis.org

21, 1428, 59136, 1936935, 55165110, 1430857428, 34701610944, 800003272068, 17726513264460, 380471504212800, 7955313269904000, 162738137109652650, 3267801532548762300, 64578810084245919000, 1258643138633207712000, 24234564983959535297400, 461636913607179055445700
Offset: 4

Author

Valery A. Liskovets, May 04 2006

Keywords

Comments

Tree-rooted planar maps are counted by A005568 and tree-rooted maps on the torus by A118445.

Programs

  • Maple
    C := proc(n) binomial(2*n,n)/(n+1) end:
    b := proc(n) options remember;
      if n<4 then 0 elif n=4 then 21 else
        ((5*(n-1)+3)*(4*(n-1)+2)*b(n-1))/((5*(n-1)-2)*(n-1-3))
      fi
    end:
    seq(add(binomial(2*n,2*i)*C(i)*b(n-i), i=0..n), n=4..20);
    # Mark van Hoeij, Apr 06 2013
  • Mathematica
    a[n_] := 2^(4n-9)(n-2)(5n^2+n+6) Gamma[n-3/2] Gamma[n+1/2]/(45 Pi (n-4)! (n+1)! );
    Table[a[n], {n, 4, 20}] (* Jean-François Alcover, Aug 28 2019 *)
  • PARI
    C(n) = binomial(2*n, n)/(n+1);
    A006298(n) = if(n<4,0,if(n==4,21,((5*(n-1)+3)*(4*(n-1)+2)*A006298(n-1))/((5*(n-1)-2)*((n-1)-3))));
    b(n)=A006298(n);
    a(n)=sum(k=0,n, binomial(2*n,2*k) * C(k) * b(n-k) );
    /* Joerg Arndt, Apr 07 2013 */

Formula

a(n) = sum(k=0..n, binomial(2*n,2*k) * C(k) * b(n-k) ), where C(n)=A000108(n) - n-th Catalan number and b(n)=A006298(n) - the number of one-vertex maps of genus 2 for n>=4 and b(n)=0 for n<4.
G.f.: 7*x^4*(3*(1-9*x)*hypergeom([7/2,11/2],[6],16*x)+77*(1-6*x)*x*hypergeom([9/2,13/2],[7],16*x)). - Mark van Hoeij, Apr 07 2013
a(n) = (n-3)*(n-2)^2*(n-1)*n*(5*n^2+n+6) * binomial(2*n,n)^2 / (5760*(n+1)*(2*n-3)*(2*n-1)). - Vaclav Kotesovec, Oct 26 2024

Extensions

Corrected (replaced 34385678184 by 34701610944) and added more terms, Mark van Hoeij and Joerg Arndt, Apr 07 2013

A118449 Number of rooted n-edge one-vertex maps on a non-orientable genus-4 surface (dually: one-face maps).

Original entry on oeis.org

0, 488, 11660, 160680, 1678880, 14771680, 115457832, 827303280, 5545466520, 35257287120, 214730922120, 1262004908528, 7197437563680, 40007524376960, 217501266966160, 1159737346931040, 6079078540464072, 31385516059734960
Offset: 3

Author

Valery A. Liskovets, May 04 2006

Keywords

Comments

One-vertex maps on a non-orientable genus-3 surface are counted by A118448. Such maps are also called bouquets of loops (and their duals are called unicellular maps).

References

  • E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
  • D. M. Jackson and T. I. Visentin, An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press, Boca Raton, 2001.

Crossrefs

Cf. A118448. A diagonal of A214806.

Programs

  • Mathematica
    With[{r=Sqrt[1-4x]},Drop[CoefficientList[Series[-(r-1)^4 (r+1)^3 (65r^3+ 337r^2- 433r-945)/(256r^11),{x,0,20}],x],3]] (* Harvey P. Dale, Aug 05 2019 *)

Formula

O.g.f.: -(R-1)^4(R+1)^3(65R^3+337R^2-433R-945)/(256R^11), where R=sqrt(1-4x).
a(n) ~ n^(9/2) * 2^(2*n-3) / sqrt(Pi) * (1 - 2*sqrt(Pi)/(3*sqrt(n))). - Vaclav Kotesovec, Oct 27 2024

A118451 Number of rooted n-edge maps on a non-orientable genus-3 surface.

Original entry on oeis.org

41, 1380, 31225, 592824, 10185056, 164037704, 2525186319, 37596421940, 545585129474, 7758174844664, 108518545261360, 1497384373878512, 20426386710028260, 275940187259609296, 3696482210884173349
Offset: 3

Author

Valery A. Liskovets, May 04 2006

Keywords

References

  • E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
  • D. M. Jackson and T. I. Visentin, An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press, Boca Raton, 2001.

Crossrefs

Programs

  • Maple
    R := sqrt(1-12*x) ;
    (R-1)*(R+1)*(68*R^5+280*R^4+588*R^3+808*R^2+416*R -(28*R^4+59*R^3+114*R^2+119*R+40)*sqrt(12*R*(R+2)))/96/R^5/(R+2)^3 ;
    g := series(%,x=0,101) ;
    for n from 3 to 100 do
        printf("%d %d\n",n,coeftayl(g,x=0,n)) ;
    end do: # R. J. Mathar, Oct 17 2012
  • Mathematica
    R = Sqrt[1-12x];
    (R-1)(R+1)(68R^5 + 280R^4 + 588R^3 + 808R^2 + 416R - (28R^4 + 59R^3 + 114R^2 + 119R + 40) Sqrt[12R(R+2)])/96/R^5/(R+2)^3 + O[x]^18 // CoefficientList[#, x]& // Drop[#, 3]& (* Jean-François Alcover, Aug 28 2019 *)

Formula

O.g.f.: (R-1) *(R+1) *(68*R^5 +280*R^4 +588*R^3 +808*R^2 +416*R -(28*R^4+59*R^3+114*R^2+119*R+40)*sqrt(12*R*(R+2)))/ (96*R^5*(R+2)^3), where R=sqrt(1-12*x).
a(n) ~ 2^(2*n + 1/2) * 3^(n - 1/2) * n^(5/4) / Gamma(1/4) * (1 - 13*Gamma(1/4) / (8*sqrt(6)*n^(1/4)) + 23*Gamma(1/4)^2 / (32*Pi*sqrt(2*n)) - 23*Gamma(1/4) / (16*sqrt(6*Pi)*n^(3/4))). - Vaclav Kotesovec, Oct 27 2024

A118448 Number of rooted n-edge one-vertex maps on a non-orientable genus-3 surface (dually: one-face maps).

Original entry on oeis.org

41, 690, 7150, 58760, 420182, 2736524, 16661580, 96411060, 536075430, 2886649260, 15139322276, 77665981120, 391031449340, 1937266785080, 9464122525784, 45670084085004, 218002466412870, 1030588793671980
Offset: 3

Author

Valery A. Liskovets, May 04 2006

Keywords

Comments

One-vertex maps on the Klein bottle are counted by A118447 and one-vertex maps on a non-orientable genus-4 surface by A118449. Such maps are also called bouquets of loops (and their duals are called unicellular maps).

References

  • E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
  • D. M. Jackson and T. I. Visentin, An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press, Boca Raton, 2001.

Crossrefs

A diagonal of A214337.

Programs

  • Mathematica
    ((R-1)^3 (R+1)^2 (11 R^2 - 29 R - 64)/(64 R^8) /. R -> Sqrt[1-4x]) + O[x]^21 // CoefficientList[#, x]& // Drop[#, 3]& (* Jean-François Alcover, Aug 29 2019 *)

Formula

O.g.f.: (R-1)^3*(R+1)^2*(11*R^2-29*R-64)/(64*R^8), where R=sqrt(1-4*x).
D-finite with recurrence (69104*n+95905)*(n-2)*(n-3) *a(n) +2*(n-3) *(34552*n^2-2691825*n+3948578) *a(n-1) +4*(-967456*n^3+10134720*n^2-23520179*n+15213000) *a(n-2) + 144 *(2*n-5) *(34552*n-41477) *(n-2) *a(n-3)=0. R. J. Mathar, Oct 17 2012
a(n) ~ n^3 * 2^(2*n-1) / 3 * (1 - 7/(4*sqrt(Pi*n))). - Vaclav Kotesovec, Oct 27 2024

A118095 Number of unrooted regular odd-valent planar maps with 8 vertices; maps are considered up to orientation-preserving homeomorphisms and the vertices are of valency 2n+1.

Original entry on oeis.org

0, 191, 39670362, 4742588317460, 457373823022288900, 39758207592119720043060, 3253001744463113558023410456, 255859318139167527752722081113072
Offset: 0

Author

Valery A. Liskovets, Apr 13 2006

Keywords

Comments

There is a closed formula.

Crossrefs

Cf. A112946.

A118094 Numbers of unrooted hypermaps on the torus with n darts up to orientation-preserving homeomorphism (darts are semi-edges in the particular case of ordinary maps).

Original entry on oeis.org

1, 6, 33, 285, 2115, 16533, 126501, 972441, 7451679, 57167260, 438644841, 3369276867, 25905339483, 199408447446, 1536728368389, 11856420991413, 91579955286519, 708146055343668, 5481535740059577, 42473608898628639
Offset: 3

Author

Valery A. Liskovets, Apr 13 2006

Keywords

Crossrefs

Programs

  • Maple
    Phi2 := proc(l)
        local a,k ;
        a := 0 ;
        for k in numtheory[divisors](l) do
            a := a+numtheory[mobius](l/k)*k^2 ;
        end do:
        a ;
    end proc:
    h0 := proc(m)
        if type(m,integer) then
            binomial(2*m,m)*3*2^(m-1)/(m+1)/(m+2) ;
        else
            0;
        end if;
    end proc:
    h1 := proc(n)
        local a;
        a := 0 ;
        if n >= 3 and type(n,integer) then
            a := add(2^k*(4^(n-2-k)-1)*binomial(n+k,k),k=0..n-3) ;
        end if;
        a/3 ;
    end proc:
    A118094 := proc(n)
        binomial(n/2+2,4)*h0(n/2) ;
        %+2*binomial(n/3+2,3)*h0(n/3) ;
        %+6*binomial(n/4+2,3)*h0(n/4) ;
        a := %+12*binomial(n/6+2,3)*h0(n/6) ;
        for l in numtheory[divisors](n) do
            if modp(n,l) = 0 then
                a := a+h1(n/l)*Phi2(l) ;
            end if;
        end do:
        a/n ;
    end proc:
    seq(A118094(n),n=3..14) ; # R. J. Mathar, Dec 17 2014
  • Mathematica
    h0[n_] := If[Denominator[n] == 1, 3*2^(n-1)*Binomial[2*n, n]/((n+1)*(n+2)), 0]; h1[n_] := Sum[(4^(n-2-k)-1)*Binomial[n+k, k]*2^k, {k, 0, n-3}]/3; phi2[n_] := Sum[MoebiusMu[n/d]*d^2, {d, Divisors[n]}]; a[n_] := (Binomial[n/2+2, 4]*h0[n/2] +  2*Binomial[n/3+2, 3]*h0[n/3]+6*Binomial[n/4+2, 3]*h0[n/4] + 12*Binomial[n/6+2, 3]*h0[n/6] + Sum[ phi2[d]*h1[n/d], {d, Divisors[n]}])/n; Table[a[n], {n, 3, 22}] (* Jean-François Alcover, Dec 18 2014, translated from PARI *)
  • PARI
    h0(n) = if(denominator(n)==1, 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)), 0);
    h1(n) = sum(k=0, n-3, (4^(n-2-k)-1)*binomial(n+k, k)<Michel Marcus, Dec 11 2014 ; corrected by Charles R Greathouse IV, Dec 17 2014