cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A173794 Partial sums of A006384.

Original entry on oeis.org

1, 3, 7, 21, 78, 390, 2461, 17491, 135226, 1103076, 9371892, 82205622, 740254762, 6814312822, 63920746639, 609452784251, 5894288690288, 57728196873452, 571747727911362, 5719672404523644, 57737110684330278, 587604181217075742
Offset: 0

Views

Author

Jonathan Vos Post, Feb 24 2010

Keywords

Comments

Partial sums of number of planar maps with n edges. The subsequence of primes in this partial sum begins: 3, 7, 17491, and no more known.

Examples

			a(21) = 1 + 2 + 4 + 14 + 57 + 312 + 2071 + 15030 + 117735 + 967850 + 8268816 + 72833730 + 658049140 + 6074058060 + 57106433817 + 545532037612 + 5284835906037 + 51833908183164 + 514019531037910 + 5147924676612282 + 52017438279806634 + 529867070532745464.
		

Crossrefs

Programs

  • Mathematica
    q[n_?OddQ]:= 3^((n-1)/2)*CatalanNumber[(n-1)/2];
    q[n_?EvenQ]:= 3^((n-2)/2)*(2*(n-1)/(n+2))*CatalanNumber[(n-2)/2];
    f[n_]:= f[n]= Sum[EulerPhi[n/k]*3^k*Binomial[2*k, k], {k, Most[Divisors[n]]}];
    A006384[n_]:= If[n==0, 1, (1/(2*n))*(2*(3^n/(n+2))*CatalanNumber[n] +f[n] + 2*n*q[n])];
    Table[Sum[A006384[j], {j,0,n}], {n,0,50}] (* G. C. Greubel, Jul 14 2021 *)

Formula

a(n) = Sum_{i=0..n} A006384(i).

A006385 Number of unsensed planar maps with n edges.

Original entry on oeis.org

1, 2, 4, 14, 52, 248, 1416, 9172, 66366, 518868, 4301350, 37230364, 333058463, 3057319072, 28656583950, 273298352168, 2645186193457, 25931472185976, 257086490694917, 2574370590192556, 26010904915620261
Offset: 0

Views

Author

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges. - Andrew Howroyd, Jan 13 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Antidiagonal sums of A277741.
Column k=0 of A379439.
Cf. A000168 (rooted), A006384 (sensed), A006443 (achiral), A006403 (2-connected), A090376.
Cf. A006387 (genus 1), A214814 (genus 2), A214815 (genus 3), A214816.

Formula

a(n) = (A006384(n) + A006443(n))/2. - Andrew Howroyd, Jan 13 2025

Extensions

a(18)-a(19) added by Andrew Howroyd, Jan 13 2025
a(20) added by Andrew Howroyd, Jan 20 2025

A379438 Triangle read by rows: T(n,k) is the number of sensed combinatorial maps with n edges and genus k, 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 2, 4, 1, 14, 6, 57, 46, 4, 312, 452, 106, 2071, 4852, 2382, 131, 15030, 52972, 46680, 8158, 117735, 587047, 830848, 313611, 14118, 967850, 6550808, 13804864, 9326858, 1369446, 8268816, 73483256, 218353000, 236095958, 74803564, 2976853, 72833730, 827801468, 3328822880, 5345316004, 3023693380, 391288854
Offset: 0

Views

Author

Andrew Howroyd, Jan 16 2025

Keywords

Examples

			Triangle begins:
  n\k     [0]      [1]       [2]      [3]      [4]
  [0]      1;
  [1]      2;
  [2]      4,       1;
  [3]     14,       6;
  [4]     57,      46,        4;
  [5]    312,     452,      106;
  [6]   2071,    4852,     2382,     131;
  [7]  15030,   52972,    46680,    8158;
  [8] 117735,  587047,   830848,  313611,   14118;
  [9] 967850, 6550808, 13804864, 9326858, 1369446;
  ...
		

Crossrefs

Row sums are A170946.
Cf. A269919 (rooted), A379439 (unsensed), A380234 (achiral), A380235.

A006386 Number of sensed genus 1 maps with n edges.

Original entry on oeis.org

1, 6, 46, 452, 4852, 52972, 587047, 6550808, 73483256, 827801468, 9360123740, 106189359544, 1208328304864, 13787042250528, 157700137398689, 1807893066408464, 20768681225892328, 239037464947999900, 2755989928117365244, 31826208029615881656, 368074022535205870382
Offset: 2

Views

Author

Keywords

Comments

A genus 1 map can be called a toroidal map.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=1 of A379438.
Cf. A006300 (rooted), A006384 (planar), A006387 (unsensed), A104595, A104596, A215019.

Extensions

More terms from Valery A. Liskovets, Mar 22 2005
Edited by N. J. A. Sloane, May 23 2008

A379430 Array read by antidiagonals: A(n,k) is the number of sensed planar maps with n vertices and k faces, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 14, 23, 14, 3, 6, 42, 108, 108, 42, 6, 14, 140, 501, 761, 501, 140, 14, 34, 473, 2264, 4744, 4744, 2264, 473, 34, 95, 1670, 10087, 27768, 38495, 27768, 10087, 1670, 95, 280, 5969, 44310, 153668, 279698, 279698, 153668, 44310, 5969, 280
Offset: 1

Views

Author

Andrew Howroyd, Jan 13 2025

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges.
The number of edges is n + k - 2.

Examples

			Array begins:
=========================================================
n\k |  1    2     3      4      5      6      7     8 ...
----+----------------------------------------------------
  1 |  1    1     1      2      3      6     14    34 ...
  2 |  1    2     5     14     42    140    473  1670 ...
  3 |  1    5    23    108    501   2264  10087 44310 ...
  4 |  2   14   108    761   4744  27768 153668 ...
  5 |  3   42   501   4744  38495 279698 ...
  6 |  6  140  2264  27768 279698 ...
  7 | 14  473 10087 153668 ...
  8 | 34 1670 44310 ...
   ...
As a triangle, rows give the number of edges (first row is 0 edges):
   1;
   1,    1;
   1,    2,     1;
   2,    5,     5,     2;
   3,   14,    23,    14,     3;
   6,   42,   108,   108,    42,     6;
  14,  140,   501,   761,   501,   140,    14;
  34,  473,  2264,  4744,  4744,  2264,   473,   34;
  95, 1670, 10087, 27768, 38495, 27768, 10087, 1670, 95;
  ...
		

Crossrefs

Antidiagonal sums are A006384.
Columns 1..2 are A002995, A380237.
Cf. A269920 (rooted), A277741 (unsensed), A379431 (achiral), A342061 (2-connected), A384964 (simple).

Formula

A(n,k) = A(k,n).

A006443 Number of achiral planar maps with n edges.

Original entry on oeis.org

1, 2, 4, 14, 47, 184, 761, 3314, 14997, 69886, 333884, 1626998, 8067786, 40580084, 206734083, 1064666724, 5536480877, 29036188788, 153450351924, 816503772830, 4371551433888
Offset: 0

Views

Author

Keywords

Comments

An achiral map is a map with a sense-reversing automorphism.
The planar maps considered are connected and may contain loops and parallel edges. - Andrew Howroyd, Jan 13 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=0 of A380234.
Cf. A006384 (sensed), A006385 (unsensed), A006444 (2-connected), A006445 (3-connected).

Formula

a(n) = 2*A006385(n) - A006384(n). [Liskovets eq 3a] - R. J. Mathar, Oct 01 2011

Extensions

a(0)=1 prepended by Andrew Howroyd, Jan 13 2025
a(20) added by Andrew Howroyd, Jan 20 2025

A006388 Number of sensed planar maps with n edges and without faces of degree 1.

Original entry on oeis.org

1, 1, 2, 6, 18, 74, 393, 2282, 14700, 99614, 703519, 5123598, 38279496
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006384, A006389 (unsensed), A379433 (rooted).

Extensions

a(8)-a(12) from Sean A. Irvine, Mar 28 2017
a(0)=1 prepended by Andrew Howroyd, Jan 16 2025

A006390 Number of sensed loopless planar maps with n edges.

Original entry on oeis.org

1, 1, 2, 5, 14, 49, 240, 1259, 7570, 47996, 319518, 2199295, 15571610, 112773478, 832809504, 6253673323, 47650870538, 367784975116, 2871331929096, 22647192990256, 180277915464664, 1447060793168493, 11703567787559680, 95312765368320637, 781151020141584190
Offset: 0

Views

Author

Keywords

Comments

By duality, also the number of sensed isthmusless planar maps with n edges. An isthmus may also be called a bridge. - Andrew Howroyd, Mar 28 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000010, A006384, A000260 (rooted), A006391 (unsensed case), A103941 (with distinguished face), A103942 (with distinguished vertex).

Programs

  • Mathematica
    a[n_] := If[n==0, 1, (1/(2n))(Sum[Binomial[4k, k] EulerPhi[n/k] Boole[ 0Jean-François Alcover, Aug 29 2019 *)
  • PARI
    a(n) = {if(n==0, 1, (sumdiv(n, d, if(dAndrew Howroyd, Mar 28 2021

Formula

a(n) = (1/(2n))*[2(4n+1)*binomial(4n, n)/((n+1)*(3n+1)*(3n+2)) + Sum_{0A000010), q(n)=binomial(2n, (n-2)/2) if n is even and q(n)=2n*binomial(2n, (n-1)/2)/(n+1) if n is odd.

Extensions

More terms from Valery A. Liskovets, Dec 01 2003
a(17) and a(19) corrected by Sean A. Irvine, Mar 26 2017

A006394 Number of sensed planar maps with n edges and without loops or parallel edges.

Original entry on oeis.org

1, 1, 1, 3, 5, 15, 52, 213, 1002, 5167, 27967, 158447, 926786
Offset: 0

Views

Author

Keywords

Comments

The planar maps considered here are connected. A planar map without loops or parallel edges is called simple. - Andrew Howroyd, Jan 16 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006384, A006390, A006395 (unsensed), A022558 (rooted).

Extensions

a(9)-a(12) from Sean A. Irvine, Mar 30 2017
a(0)=1 prepended by Andrew Howroyd, Jan 16 2025

A006392 Number of sensed planar maps with n edges and without faces of degree 1 or 2.

Original entry on oeis.org

1, 0, 1, 4, 9, 34, 161, 830, 4779, 29092, 184510, 1208178, 8116922
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006384, A006388, A006393 (unsensed), A379434 (rooted).

Extensions

a(8)-a(12) from Sean A. Irvine, Mar 29 2017
a(0)-a(1) prepended by Andrew Howroyd, Jan 16 2025
Showing 1-10 of 17 results. Next