A289548 The lesser of two semiprime brothers.
9, 14, 21, 26, 403, 12367, 41303, 66893, 68297, 73147, 111607, 116813, 118003, 130133, 146873, 222757, 260497, 418307, 429491, 439097, 478061, 559003, 628241, 729007, 822397, 1116707, 1239869, 1595683, 1887239, 2148589, 2225669, 2481463, 2502977, 2539553
Offset: 1
Keywords
Examples
26 is in the sequence because 26 = 2*13 and the next semiprime is 33 = 3*11 with 2 & 3 consecutive primes and 11 & 13 consecutive primes. 403 is in the sequence because 403 = 13*31 and the next semiprime is 407 = 11*37 with 11 & 13 and 31 & 37 being consecutive primes.
Links
- Jonathan Vos Post, Robert G. Wilson v, and Giovanni Resta, Table of n, a(n) for n = 1..5275 (terms < 10^12, terms > 10^10 from G. Resta)
Programs
-
Mathematica
p = q = 4; fp = fq = {1, 1}; lst = {}; While[p < 26000000, While[fq = Flatten[ Table[#1, {#2}] & @@@ FactorInteger@ q]; Length@ fq != 2, q++]; d = Sort[{fp, fq}]; If[ NextPrime[ d[[1, 1]]] == d[[2, 1]] && NextPrime[ d[[2, 2]]] == d[[1, 2]], AppendTo[lst, p]]; p = q; fp = fq; q++]; lst
-
PARI
isok(p, q) = (nextprime(p+1) == q) || (nextprime(q+1) == p); pairp(n) = if (issquare(n), vector(2, k, sqrtint(n)), (factor(n)[,1])~); lista(nn) = {na = 2; while (na < nn, if (bigomega(na) != 2, na++, nb = na + 1; while (bigomega(nb) != 2, nb++); fpa = pairp(na); fpb = pairp(nb); if (isok(fpa[1], fpb[1]) && isok(fpa[2], fpb[2]), print1(na, ", ")); na = nb;););} \\ Michel Marcus, Jul 11 2017
-
Python
from sympy import factorint, nextprime def is_semiprime(n): return sum(e for e in factorint(n).values()) == 2 def next_semiprime(n): nxt = n + 1 while not is_semiprime(nxt): nxt += 1 return nxt def are_consecutive(p, q): return max(p, q) == nextprime(min(p, q)) def ok(n): if not is_semiprime(n): return False nextsp = next_semiprime(n) fn, fm = factorint(n, multiple=True), factorint(nextsp, multiple=True) return are_consecutive(fn[0], fm[0]) and are_consecutive(fn[1], fm[1]) print(list(filter(ok, range(150000)))) # Michael S. Branicky, Sep 14 2021
Comments