cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A214833 Number of formula representations of n using addition, multiplication and the constant 1.

Original entry on oeis.org

1, 1, 2, 6, 16, 52, 160, 536, 1796, 6216, 21752, 77504, 278720, 1013184, 3712128, 13701204, 50880808, 190003808, 712975648, 2687114976, 10167088608, 38605365712, 147060726688, 561853414896, 2152382687488, 8265949250848, 31817041756880, 122728993889056
Offset: 1

Views

Author

Alois P. Heinz, Mar 07 2013

Keywords

Examples

			a(1) = 1: 1.
a(2) = 1: 11+.
a(3) = 2: 111++, 11+1+.
a(4) = 6: 1111+++, 111+1++, 11+11++, 111++1+, 11+1+1+, 11+11+*.
a(5) = 16: 11111++++, 1111+1+++, 111+11+++, 1111++1++, 111+1+1++, 111+11+*+, 11+111+++, 11+11+1++, 111++11++, 11+1+11++, 1111+++1+, 111+1++1+, 11+11++1+, 111++1+1+, 11+1+1+1+, 11+11+*1+.
All formulas are given in postfix (reverse Polish) notation but other notations would give the same results.
		

Crossrefs

Cf. A213923 (minimal length of formula), A005408(n-1) (maximal length of formula), A214835 (total sum of lengths), A214836, A214843, A242970, A242955.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=1, 1,
           add(a(i)*a(n-i), i=1..n-1)+
           add(a(d)*a(n/d), d=divisors(n) minus {1, n}))
        end:
    seq(a(n), n=1..40);
  • Mathematica
    a[n_] := a[n] = If[n == 1, 1, Sum[a[i]*a[n-i], {i, 1, n-1}] + Sum[a[d]*a[n/d], {d, Divisors[n][[2 ;; -2]]}]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 05 2015, after Alois P. Heinz *)
  • PARI
    A214833_vec=[1]; alias(A,A214833_vec); A214833(n)={n>#A&&A=concat(A,vector(n-#A));if(A[n],A[n],A[n]=sum(i=1,n-1,A214833(i)*A214833(n-i))+sumdiv(n,d,if(d>1&&dA214833(d)*A214833(n/d))))} \\ M. F. Hasler, May 04 2017

Formula

a(n) = Sum_{i=1..n-1} a(i)*a(n-i) + Sum_{d|n, 11, a(1)=1.
a(n) ~ c * d^n / n^(3/2), where d = 4.076561785276... = A242970, c = 0.145691854699979... = A242955. - Vaclav Kotesovec, Sep 12 2014

A242970 Decimal expansion of the constant rho = lim f(n)^(1/n), where f(n) = A214833(n) is the number of arithmetic formulas for n (cf. comments).

Original entry on oeis.org

4, 0, 7, 6, 5, 6, 1, 7, 8, 5, 2, 7, 6, 0, 4, 6, 1, 9, 8, 6, 0, 4, 0, 2, 2, 8, 5, 2, 8, 1, 5, 0, 2, 0, 2, 6
Offset: 1

Views

Author

Jonathan Vos Post, Jun 09 2014

Keywords

Comments

This is the constant ρ, given on page 2 of E. K. Gnang and others. From the abstract: "An arithmetic formula is an expression involving only the constant 1, and the binary operations of addition and multiplication, with multiplication by 1 not allowed. We obtain an asymptotic formula for the number of arithmetic formulas evaluating to n as n goes to infinity, solving a conjecture of E. K. Gnang and D. Zeilberger."
More precisely: Let f(n) = A214833(n) be the number of arithmetic formulas for n. Then there exist constants c > 0 and ρ > 4 such that f(n) ~ c*ρ^n/n^(3/2) as n -> oo where ρ = 4.076561785276046... given in this sequence, and c = 0.145691854699979... given in A242955. - M. F. Hasler, May 04 2017

Examples

			ρ = 4.07656178527604619860402285281502026...
		

Crossrefs

The constant c = lim f(n)*n^(3/2)/rho^n is given in A242955.
Cf. A214833.

Formula

f(n) = A214833(n) ~ c*ρ^n/n^(3/2) = A242955*A242970^n/n^(3/2) as n -> oo, thus rho = A242970 = lim f(n)^(1/n) = lim f(n+1)/f(n) = lim (1+1/n)^(3/2)*f(n+1)/f(n), the latter expression being the most accurate/rapidly converging of the three. The values for n = 999, however, yield only 6 correct decimals (4.076559...). - M. F. Hasler, May 04 2017

Extensions

Edited by M. F. Hasler, May 03 2017
Showing 1-2 of 2 results.