cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A242955 Decimal expansion of the constant c = lim f(n)*n^(3/2)/rho^n where f(n) = A214833(n) is the number of arithmetic formulas for n, and rho = A242970.

Original entry on oeis.org

1, 4, 5, 6, 9, 1, 8, 5, 4, 6, 9, 9, 9, 7, 9, 2, 9, 4, 5, 6, 0, 4, 2, 4, 8, 3, 6, 0, 5, 7, 9
Offset: 0

Views

Author

Jonathan Vos Post, Jun 09 2014

Keywords

Comments

This is the constant c given on page 2 of E. K. Gnang and others.
Gnang et al. find f(n) = A214833(n) ~ c*rho^n/n^(3/2) as n -> oo, with rho given in A242970, and c given by the present sequence. - M. F. Hasler, May 04 2017

Examples

			c = 0.1456918546999792945604248360579...
		

Crossrefs

The constant rho is given in A242970.
Cf. A214833.

Extensions

Offset corrected, definition improved, more terms from M. F. Hasler, May 04 2017

A214833 Number of formula representations of n using addition, multiplication and the constant 1.

Original entry on oeis.org

1, 1, 2, 6, 16, 52, 160, 536, 1796, 6216, 21752, 77504, 278720, 1013184, 3712128, 13701204, 50880808, 190003808, 712975648, 2687114976, 10167088608, 38605365712, 147060726688, 561853414896, 2152382687488, 8265949250848, 31817041756880, 122728993889056
Offset: 1

Views

Author

Alois P. Heinz, Mar 07 2013

Keywords

Examples

			a(1) = 1: 1.
a(2) = 1: 11+.
a(3) = 2: 111++, 11+1+.
a(4) = 6: 1111+++, 111+1++, 11+11++, 111++1+, 11+1+1+, 11+11+*.
a(5) = 16: 11111++++, 1111+1+++, 111+11+++, 1111++1++, 111+1+1++, 111+11+*+, 11+111+++, 11+11+1++, 111++11++, 11+1+11++, 1111+++1+, 111+1++1+, 11+11++1+, 111++1+1+, 11+1+1+1+, 11+11+*1+.
All formulas are given in postfix (reverse Polish) notation but other notations would give the same results.
		

Crossrefs

Cf. A213923 (minimal length of formula), A005408(n-1) (maximal length of formula), A214835 (total sum of lengths), A214836, A214843, A242970, A242955.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=1, 1,
           add(a(i)*a(n-i), i=1..n-1)+
           add(a(d)*a(n/d), d=divisors(n) minus {1, n}))
        end:
    seq(a(n), n=1..40);
  • Mathematica
    a[n_] := a[n] = If[n == 1, 1, Sum[a[i]*a[n-i], {i, 1, n-1}] + Sum[a[d]*a[n/d], {d, Divisors[n][[2 ;; -2]]}]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 05 2015, after Alois P. Heinz *)
  • PARI
    A214833_vec=[1]; alias(A,A214833_vec); A214833(n)={n>#A&&A=concat(A,vector(n-#A));if(A[n],A[n],A[n]=sum(i=1,n-1,A214833(i)*A214833(n-i))+sumdiv(n,d,if(d>1&&dA214833(d)*A214833(n/d))))} \\ M. F. Hasler, May 04 2017

Formula

a(n) = Sum_{i=1..n-1} a(i)*a(n-i) + Sum_{d|n, 11, a(1)=1.
a(n) ~ c * d^n / n^(3/2), where d = 4.076561785276... = A242970, c = 0.145691854699979... = A242955. - Vaclav Kotesovec, Sep 12 2014
Showing 1-2 of 2 results.