A275613 Restricted Perrin pseudoprimes (Grantham definition).
27664033, 46672291, 102690901, 130944133, 517697641, 545670533, 801123451, 855073301, 970355431, 1235188597, 3273820903, 3841324339, 3924969689, 4982970241, 5130186571, 5242624003, 6335800411, 7045248121, 7279379941, 7825642579
Offset: 1
Keywords
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..701
- W. W. Adams and D. Shanks, Strong primality tests that are not sufficient, Math. Comp. 39 (1982), 255-300.
- Steven Arno, A note on Perrin pseudoprimes, Math. Comp. 56 (1991), 371-376.
- Jon Grantham, Frobenius pseudoprimes, Math. Comp. 70 (2001), 873-891.
- Jon Grantham, There are infinitely many Perrin pseudoprimes, J. Number Theory 130 (2010) 1117-1128.
- Dana Jacobsen, Perrin Primality Tests.
- G. C. Kurtz, Daniel Shanks, and H. C. Williams, Fast Primality Tests for Numbers < 50*10^9, Math. Comp., 46 (1986), 691-701.
Crossrefs
Programs
-
PARI
perrin3(n) = { my(M,L,S,j,A,B,C,D); if(n==2||n==23,return(1)); if(n%2==0,return(0)); M=Mod( [0,1,0; 0,0,1; 1,1,0], n)^n; L=Mod( [0,1,0; 0,0,1; 1,0,-1], n)^n; S=[ 3*L[3,2]-L[3,3], 3*L[2,2]-L[2,3], 3*L[1,2]-L[1,3], \ 3*M[3,1]+2*M[3,3], 3*M[1,1]+2*M[1,3], 3*M[2,1]+2*M[2,3] ]; if (S[5] != 0 || S[2] != n-1,return(0)); j = kronecker(-23,n); if (j == 0,return(0)); if (j == -1, B=S[3];A=1+3*B-B^2;C=3*B^2-2; if(S[1]==A && S[3]==B && S[4]==B && S[6] == C && B != 3 && B^3-B==1, return(1), return(0))); if (S[1] == 1 && S[3] == 3 && S[4] == 3 && S[6] == 2, return(1)); if (S[1] == 0 && S[6] == n-1 && S[3] != S[4] && S[3]+S[4] == n-3 && (S[3]-S[4])^2 == Mod(-23,n), return(1)); return(0); }
-
Perl
use ntheory ":all"; foroddcomposites { say if is_perrin_pseudoprime($,3); } 1e8; # _Dana Jacobsen, Aug 03 2016
Comments