cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: T. D. Noe

T. D. Noe's wiki page.

T. D. Noe has authored 2216 sequences. Here are the ten most recent ones:

A365144 Numbers having each digit once and whose 4th power has each digit four times.

Original entry on oeis.org

5702631489, 7264103985, 7602314895, 7824061395, 8105793624, 8174035962, 8304269175, 8904623175, 8923670541, 9451360827, 9785261403, 9804753612, 9846032571
Offset: 1

Author

T. D. Noe, Nov 09 2011

Keywords

Comments

Currently same terms as A114260, but that sequence has more terms to follow. - Ray Chandler, Aug 23 2023

Examples

			5702631489 is a term since its 4th power 1057550783692741389295697108242363408641 contains four 5's, four 7's, four 0's and so on.
		

Crossrefs

Cf. A050278 (pandigital numbers), A199630, A199631, A199633. Subsequence of A114260.

Programs

  • Mathematica
    t = Select[Permutations[Range[0, 9]], #[[1]] > 0 &]; t2 = Select[t, Union[DigitCount[FromDigits[#]^4]] == {4} &]; FromDigits /@ t2 (* T. D. Noe, Nov 08 2011 *)

A241202 Beginning of a polynomial relation of degree n in n+2 terms in the first half of Pascal's triangle. See A241201.

Original entry on oeis.org

1, 2, 26, 9, 149, 489
Offset: 1

Author

T. D. Noe, Apr 21 2014

Keywords

Comments

Is this sequence finite?

Crossrefs

Cf. A008865 (binomial(n,k) has 3 consecutive terms in a linear relation).
Cf. A062730 (3 terms in arithmetic progression in Pascal's triangle).
Cf. A241199, A241200 (similar, but quadratic).

Programs

  • Mathematica
    t = Table[k = 1; While[b = Binomial[k, Range[0, k/2]]; d = Differences[b, n + 1]; ! MemberQ[d, 0], k++]; {k, Position[d, 0, 1, 1][[1, 1]] - 1}, {n, 6}]; Transpose[t][[2]]

A241201 a(n) is the least r such that there are n+2 consecutive increasing terms in the r-th row of Pascal's triangle (binomial(r,*)) which satisfy a polynomial of degree n.

Original entry on oeis.org

7, 14, 62, 31, 339, 1022
Offset: 1

Author

T. D. Noe, Apr 21 2014

Keywords

Comments

Old definition: "Numbers k such that n+2 consecutive terms of binomial(n,k) satisfy a polynomial relation of degree n for some k in the range 0 <= k <= n/2.".
Is this sequence finite?

Examples

			a(1) = 7 because the 3 terms 7, 21, 35 are linear.
		

Crossrefs

Cf. A008865 (binomial(n,k) has 3 consecutive terms in a linear relation).
Cf. A062730 (3 terms in arithmetic progression in Pascal's triangle).
Cf. A241199, A241200 (similar, but quadratic).
Cf. A241202 (position of the first of terms).

Programs

  • Mathematica
    t = Table[k = 1; While[b = Binomial[k, Range[0, k/2]]; d = Differences[b, n + 1]; ! MemberQ[d, 0], k++]; {k, Position[d, 0, 1, 1][[1, 1]] - 1}, {n, 6}]; Transpose[t][[1]]

Extensions

Definition clarified by Don Reble, Dec 14 2020

A241200 For the n in A241199, the index of the first of 4 terms in binomial(n,k) that satisfy a quadratic relation.

Original entry on oeis.org

2, 4, 9, 12, 19, 23, 32, 37, 48, 54, 67, 74, 89, 97, 114, 123, 142, 152, 173, 184, 207, 219, 244, 257, 284, 298, 327, 342, 373, 389, 422, 439, 474, 492, 529, 548, 587, 607, 648, 669, 712, 734, 779, 802, 849, 873, 922, 947, 998, 1024, 1077, 1104, 1159, 1187
Offset: 1

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

This value of k appears to approach n/2 as n grows larger.

Examples

			Binomial(14,k) = (1, 14, 91, 364, 1001, 2002, 3003, 3432) for k = 0..7. The 4 quadratic terms begin at k = 2.
		

Crossrefs

Cf. A008865 (binomial(n,k) has 3 consecutive terms in a linear relation).
Cf. A062730 (3 terms in arithmetic progression in Pascal's triangle).
Cf. A241199 (the values of n).

Programs

  • Mathematica
    t = {}; Do[b = Binomial[n, Range[0, n/2]]; d = Differences[b, 3]; If[MemberQ[d, 0], AppendTo[t, Position[d, 0, 1, 1][[1, 1]] - 1]], {n, 3000}]; t
    LinearRecurrence[{1,2,-2,-1,1},{2,4,9,12,19},60] (* Harvey P. Dale, Dec 18 2022 *)
  • PARI
    Vec(x*(x^2-2)*(x^2+x+1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Apr 29 2015

Formula

a(n) = (-11-5*(-1)^n-2*(-15+(-1)^n)*n+6*n^2)/16. G.f.: x*(x^2-2)*(x^2+x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Apr 18 2014 and Apr 29 2015
The terms appear to satisfy a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), with initial terms 2, 4, 9, 12, 19. - T. D. Noe, Apr 18 2014

A241199 Numbers n such that 4 consecutive terms of binomial(n,k) satisfy a quadratic relation for 0 <= k <= n/2.

Original entry on oeis.org

14, 19, 31, 38, 54, 63, 83, 94, 118, 131, 159, 174, 206, 223, 259, 278, 318, 339, 383, 406, 454, 479, 531, 558, 614, 643, 703, 734, 798, 831, 899, 934, 1006, 1043, 1119, 1158, 1238, 1279, 1363, 1406, 1494, 1539, 1631, 1678, 1774, 1823, 1923, 1974, 2078, 2131
Offset: 1

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

From Robert Israel, Apr 28 2015: (Start)
Numbers n >= 14 such that 3*n + 7 is a square.
This is because
C(n,i+3) - 3*C(n,i+2) + 3*C(n,i+1) - C(n,i) = n!/((n-i)!*(i+3)!) * g(n,i)
where g(n,i) = (n-3-2*i) * ((n-3-2*i)^2 - 3*n - 7). (End)

Examples

			Binomial(14,k) = (1, 14, 91, 364, 1001, 2002, 3003, 3432) for k = 0..7. The 4 terms beginning with 91 equal 182 - 273*x + 182*x^2 for x = 1..4.
		

Crossrefs

Sequence A241200 gives the position of the first of the 4 terms. Sequence A008865 gives the terms greater than 2 for which 3 consecutive terms satisfy a linear relation.
A014206 is a related sequence. - Avi Friedlich, Apr 28 2015
Cf. A062730 (3 terms in arithmetic progression in Pascal's triangle).

Programs

  • Maple
    map(k -> (3*k^2+8*k+3,3*k^2+10*k+6),[$1..100]); # Robert Israel, Apr 28 2015
  • Mathematica
    Select[Range[2500], MemberQ[Differences[Binomial[#, Range[0, #/2]], 3], 0] &]
    LinearRecurrence[{1,2,-2,-1,1},{14,19,31,38,54},50] (* Harvey P. Dale, Oct 29 2017 *)
  • PARI
    Vec(-x*(6*x^4-3*x^3-16*x^2+5*x+14)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Apr 29 2015
    
  • PARI
    a(n)=(6*n^2+42*n+55-(-1)^n*(2*n+7))/8 \\ Charles R Greathouse IV, Apr 15 2016

Formula

a(n) = (55-7*(-1)^n-2*(-21+(-1)^n)*n+6*n^2)/8. G.f.: -x*(6*x^4-3*x^3-16*x^2+5*x+14) / ((x-1)^3*(x+1)^2). - Colin Barker, Apr 18 2014 and Apr 29 2015
The terms appear to satisfy a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), with initial terms 14, 19, 31, 38, 54. - T. D. Noe, Apr 18 2014
Numbers are of the form A200182(3n+1) and A200182(3n-1). - Avi Friedlich, Apr 25 2015
a(2*k-1) = 3*k^2 + 8*k + 3, a(2*k) = 3*k^2 + 10*k + 6. - Robert Israel, Apr 28 2015

A241198 Denominator of new minima of phi(p-1)/(p-1), where phi is Euler's totient function and p = prime(n).

Original entry on oeis.org

1, 2, 3, 15, 35, 77, 1463, 1309, 1001, 4147, 2093, 19019, 17017, 39767, 35581, 323323, 10023013, 1339481, 676039, 20957209, 2800733, 86822723
Offset: 1

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

The values of p are in A241196. The numerator is in A241197.

Crossrefs

Cf. A008330 (phi(prime(n)-1)), A073918, A241194, A241195.

Programs

  • Mathematica
    tMin = {{2, 1}}; Do[p = Prime[n]; tn = EulerPhi[p - 1]/(p - 1); If[tn < tMin[[-1, -1]], AppendTo[tMin, {p, tn}]], {n, 10^7}]; Denominator[Transpose[tMin][[2]]]

Extensions

a(20)-a(22) from Giovanni Resta, Apr 14 2016

A241197 Numerator of new minima of phi(p-1)/(p-1), where phi is Euler's totient function and p = prime(n).

Original entry on oeis.org

1, 1, 1, 4, 8, 16, 288, 256, 192, 768, 384, 3456, 3072, 6912, 6144, 55296, 1658880, 221184, 110592, 3317760, 442368, 13271040
Offset: 1

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

The values of p are in A241196. The denominator is in A241198.

Examples

			In decimal, the minima are about 1, 0.5, 0.333333, 0.266667, 0.228571, 0.207792, 0.196856, 0.195569, 0.191808, 0.185194, 0.183469, 0.181713, 0.180525, 0.173812, 0.172676, 0.171024, 0.165507, 0.165127, 0.163588.
		

Crossrefs

Cf. A008330 (phi(prime(n)-1)), A073918, A241194, A241195.

Programs

  • Mathematica
    tMin = {{2, 1}}; Do[p = Prime[n]; tn = EulerPhi[p - 1]/(p - 1); If[tn < tMin[[-1, -1]], AppendTo[tMin, {p, tn}]], {n, 10^7}]; Numerator[Transpose[tMin][[2]]]

Extensions

a(20)-a(22) from Giovanni Resta, Apr 14 2016

A241196 Primes p at which phi(p-1)/(p-1) reaches a new minimum, where phi is Euler's totient function.

Original entry on oeis.org

2, 3, 7, 31, 211, 2311, 43891, 78541, 120121, 870871, 1381381, 2282281, 4084081, 13123111, 82192111, 106696591, 300690391, 562582021, 892371481, 6915878971, 71166625531, 200560490131
Offset: 1

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

For these p, the numerator and denominator of phi(p-1)/(p-1) are listed in A241197 and A241198. This sequence appears to be related to A073918, the smallest prime which is 1 more than a product of n distinct primes.
By Dirichlet's theorem on primes in arithmetic progressions, for any n there is a prime p such that p-1 is divisible by the primorial A002110(n). Then phi(p-1)/(p-1) <= Product_{i=1..n} (1 - 1/prime(i)). Since Sum_{i >= 1} prime(i) diverges, that goes to 0 as n -> infinity. Thus there are primes with phi(p-1)/(p-1) arbitrarily close to 0. - Robert Israel, Jan 18 2016
5*10^12 < a(23) <= 12234189897931. - Giovanni Resta, Apr 14 2016

References

  • R. K. Guy, Unsolved Problems in Number Theory, A2.

Crossrefs

Cf. A002110, A008330 (phi(prime(n)-1)), A073918, A241194, A241195.

Programs

  • Maple
    m:= infinity:
    p:= 1:
    count:= 0:
    while count < 10 do
      p:= nextprime(p);
      r:= numtheory:-phi(p-1)/(p-1);
      if r < m then
         count:= count+1;
         A[count]:= p;
         m:= r;
      fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Jan 18 2016
  • Mathematica
    tMin = {{2, 1}}; Do[p = Prime[n]; tn = EulerPhi[p - 1]/(p - 1); If[tn < tMin[[-1, -1]], AppendTo[tMin, {p, tn}]], {n, 10^7}]; Transpose[tMin][[1]]

Extensions

a(20) from Dimitri Papadopoulos, Jan 11 2016
a(21)-a(22) from Giovanni Resta, Apr 14 2016

A241195 Denominator of phi(prime(n)-1)/(prime(n)-1), where phi is Euler's totient function and prime(n) is the n-th prime.

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 2, 3, 11, 7, 15, 3, 5, 7, 23, 13, 29, 15, 33, 35, 3, 13, 41, 11, 3, 5, 51, 53, 3, 7, 7, 65, 17, 69, 37, 15, 13, 3, 83, 43, 89, 15, 95, 3, 7, 33, 35, 37, 113, 19, 29, 119, 15, 5, 2, 131, 67, 15, 69, 35, 141, 73, 51, 31, 13, 79, 33, 7, 173, 87, 11
Offset: 1

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

The numerators are in A241194.

Crossrefs

Cf. A000010 (phi), A241194 (numerators).

Programs

  • Magma
    [Denominator(EulerPhi(NthPrime(n)-1)/(NthPrime(n)-1)): n in [1..80]]; // Vincenzo Librandi, Apr 06 2015
  • Maple
    with(numtheory): A241195:=n->denom(phi(ithprime(n)-1) / (ithprime(n)-1)): seq(A241195(n), n=1..100); # Wesley Ivan Hurt, Apr 06 2015
  • Mathematica
    Denominator[Table[EulerPhi[p - 1]/(p - 1), {p, Prime[Range[100]]}]]
  • PARI
    lista(nn) = forprime(p=2, nn, print1(denominator(eulerphi(p-1)/(p-1)), ", ")); \\ Michel Marcus, Jan 03 2015
    

Formula

a(n) = A109395(A006093(n)). - Ridouane Oudra, Mar 24 2025

A241194 Numerator of phi(p-1)/(p-1), where phi is Euler's totient function and p = prime(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 4, 1, 2, 2, 11, 6, 14, 4, 10, 12, 1, 4, 20, 5, 1, 2, 16, 26, 1, 3, 2, 24, 8, 22, 18, 4, 4, 1, 41, 21, 44, 4, 36, 1, 3, 10, 8, 12, 56, 6, 14, 48, 4, 2, 1, 65, 33, 4, 22, 12, 46, 36, 16, 12, 4, 39, 8, 2, 86, 28, 5, 89, 20, 10, 2, 95
Offset: 1

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

The denominators are in A241195. The new minima of phi(p-1)/(p-1) occur at primes listed in A241196. The numerator and denominator of those terms are in A241197 and A241198.
For primes p>2, the fraction phi(p - 1)/(p - 1) has the maximum value = 1/2 if and only if p is in A019434. - Geoffrey Critzer, Dec 30 2014

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 117.

Crossrefs

Programs

  • Magma
    [Numerator(EulerPhi(NthPrime(n)-1)/(NthPrime(n)-1)): n in [1..80]]; // Vincenzo Librandi, Apr 06 2015
  • Maple
    seq(numer(numtheory:-phi(ithprime(i)-1)/(ithprime(i)-1)), i=1..100); # Robert Israel, Jan 11 2015
  • Mathematica
    Numerator[Table[EulerPhi[p - 1]/(p - 1), {p, Prime[Range[100]]}]]
  • PARI
    lista(nn) = forprime(p=2, nn, print1(numerator(eulerphi(p-1)/(p-1)), ", ")); \\ Michel Marcus, Jan 03 2015
    

Formula

From Amiram Eldar, Jul 31 2020: (Start)
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{n=1..m} a(n)/A241195(n) = 0.373955... (Artin's constant, A005596).
Asymptotic mean of inverse ratio: lim_{m->oo} (1/m) * Sum_{n=1..m} A241195(n)/a(n) = 2.826419... (Murata's constant, A065485). (End)
a(n) = A076512(A006093(n)). - Ridouane Oudra, Mar 24 2025