cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A241200 For the n in A241199, the index of the first of 4 terms in binomial(n,k) that satisfy a quadratic relation.

Original entry on oeis.org

2, 4, 9, 12, 19, 23, 32, 37, 48, 54, 67, 74, 89, 97, 114, 123, 142, 152, 173, 184, 207, 219, 244, 257, 284, 298, 327, 342, 373, 389, 422, 439, 474, 492, 529, 548, 587, 607, 648, 669, 712, 734, 779, 802, 849, 873, 922, 947, 998, 1024, 1077, 1104, 1159, 1187
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

This value of k appears to approach n/2 as n grows larger.

Examples

			Binomial(14,k) = (1, 14, 91, 364, 1001, 2002, 3003, 3432) for k = 0..7. The 4 quadratic terms begin at k = 2.
		

Crossrefs

Cf. A008865 (binomial(n,k) has 3 consecutive terms in a linear relation).
Cf. A062730 (3 terms in arithmetic progression in Pascal's triangle).
Cf. A241199 (the values of n).

Programs

  • Mathematica
    t = {}; Do[b = Binomial[n, Range[0, n/2]]; d = Differences[b, 3]; If[MemberQ[d, 0], AppendTo[t, Position[d, 0, 1, 1][[1, 1]] - 1]], {n, 3000}]; t
    LinearRecurrence[{1,2,-2,-1,1},{2,4,9,12,19},60] (* Harvey P. Dale, Dec 18 2022 *)
  • PARI
    Vec(x*(x^2-2)*(x^2+x+1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Apr 29 2015

Formula

a(n) = (-11-5*(-1)^n-2*(-15+(-1)^n)*n+6*n^2)/16. G.f.: x*(x^2-2)*(x^2+x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Apr 18 2014 and Apr 29 2015
The terms appear to satisfy a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), with initial terms 2, 4, 9, 12, 19. - T. D. Noe, Apr 18 2014

A200182 Number of -n..n arrays x(0..3) of 4 elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern).

Original entry on oeis.org

3, 6, 11, 14, 19, 26, 31, 38, 47, 54, 63, 74, 83, 94, 107, 118, 131, 146, 159, 174, 191, 206, 223, 242, 259, 278, 299, 318, 339, 362, 383, 406, 431, 454, 479, 506, 531, 558, 587, 614, 643, 674, 703, 734, 767, 798, 831, 866, 899, 934, 971, 1006, 1043, 1082, 1119, 1158
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2011

Keywords

Examples

			Some solutions for n=6:
..3....4....2....6....5....2....0....6....1....0....0....5....6....1....4....3
.-2....0....1...-2....6....3...-1...-1....2....1....1....0...-3....0...-1....1
.-1....1....2...-1...-6...-3....0....0....3....2...-1....1...-2....1....0....2
..0...-5...-5...-3...-5...-2....1...-5...-6...-3....0...-6...-1...-2...-3...-6
		

Crossrefs

Row 4 of A200181.
A014206 is a related sequence.

Formula

Empirical: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +a(n-5)
a(3*k-2) = ((3*k+1)^2)/3 - 7/3.
a(3*k-1) = ((3*k+2)^2)/3 - 7/3.
a(3*k) = ((3*k+3)^2)/3 - 1 = 3*(k+1)^2 - 1.
a(3*k+1) = ((3*k+4)^2)/3 - 7/3.
a(3*k+2) = ((3*k+5)^2)/3 - 7/3 ... and so on.
The terms a(3*k-1) and a(3*k+1) seem to be terms of A241199: numbers n such that 4 consecutive terms of binomial(n,k) satisfy a quadratic relation for 0 <= k <= n/2. - Avi Friedlich, Apr 28 2015
Empirical g.f.: -x*(2*x^4-5*x^3+2*x^2+3) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Apr 28 2015

A241201 a(n) is the least r such that there are n+2 consecutive increasing terms in the r-th row of Pascal's triangle (binomial(r,*)) which satisfy a polynomial of degree n.

Original entry on oeis.org

7, 14, 62, 31, 339, 1022
Offset: 1

Views

Author

T. D. Noe, Apr 21 2014

Keywords

Comments

Old definition: "Numbers k such that n+2 consecutive terms of binomial(n,k) satisfy a polynomial relation of degree n for some k in the range 0 <= k <= n/2.".
Is this sequence finite?

Examples

			a(1) = 7 because the 3 terms 7, 21, 35 are linear.
		

Crossrefs

Cf. A008865 (binomial(n,k) has 3 consecutive terms in a linear relation).
Cf. A062730 (3 terms in arithmetic progression in Pascal's triangle).
Cf. A241199, A241200 (similar, but quadratic).
Cf. A241202 (position of the first of terms).

Programs

  • Mathematica
    t = Table[k = 1; While[b = Binomial[k, Range[0, k/2]]; d = Differences[b, n + 1]; ! MemberQ[d, 0], k++]; {k, Position[d, 0, 1, 1][[1, 1]] - 1}, {n, 6}]; Transpose[t][[1]]

Extensions

Definition clarified by Don Reble, Dec 14 2020

A241202 Beginning of a polynomial relation of degree n in n+2 terms in the first half of Pascal's triangle. See A241201.

Original entry on oeis.org

1, 2, 26, 9, 149, 489
Offset: 1

Views

Author

T. D. Noe, Apr 21 2014

Keywords

Comments

Is this sequence finite?

Crossrefs

Cf. A008865 (binomial(n,k) has 3 consecutive terms in a linear relation).
Cf. A062730 (3 terms in arithmetic progression in Pascal's triangle).
Cf. A241199, A241200 (similar, but quadratic).

Programs

  • Mathematica
    t = Table[k = 1; While[b = Binomial[k, Range[0, k/2]]; d = Differences[b, n + 1]; ! MemberQ[d, 0], k++]; {k, Position[d, 0, 1, 1][[1, 1]] - 1}, {n, 6}]; Transpose[t][[2]]
Showing 1-4 of 4 results.