cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Wesley Ivan Hurt

Wesley Ivan Hurt's wiki page.

Wesley Ivan Hurt has authored 1828 sequences. Here are the ten most recent ones:

A386624 a(n) = Sum_{d|n} sigma(d) * phi(d) * mu(n/d).

Original entry on oeis.org

1, 2, 7, 11, 23, 14, 47, 46, 70, 46, 119, 77, 167, 94, 161, 188, 287, 140, 359, 253, 329, 238, 527, 322, 596, 334, 642, 517, 839, 322, 959, 760, 833, 574, 1081, 770, 1367, 718, 1169, 1058, 1679, 658, 1847, 1309, 1610, 1054, 2207, 1316, 2346, 1192, 2009, 1837, 2807, 1284, 2737, 2162, 2513, 1678, 3479, 1771, 3719, 1918, 3290, 3056, 3841, 1666, 4487, 3157, 3689
Offset: 1

Author

Wesley Ivan Hurt, Jul 27 2025

Keywords

Comments

Möbius transform of sigma(n) * phi(n) = A062354(n).

Crossrefs

Cf. A000010 (phi), A000203 (sigma), A062354, A330523.

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] DivisorSigma[1, d] MoebiusMu[n/d], {d, Divisors[n]}], {n, 100}]
    f[p_, e_] := p^(2*e) - p^(e-1) - If[e > 1, p^(2*e-2) - p^(e-2), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 27 2025 *)
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i, 2];  p^(2*e) - p^(e - 1) - if(e > 1, p^(2*e - 2) - p^(e - 2), 1));} \\ Amiram Eldar, Jul 27 2025

Formula

a(n) = Sum_{d|n} A062354(d) * mu(n/d).
From Amiram Eldar, Jul 27 2025: (Start)
Multiplicative with a(p) = p^2 - 2, and a(p^e) = p^(2*e) - p^(2*e-2) - p^(e-1) + p^(e-2) for e >= 2.
Dirichlet g.f.: (zeta(s-2) * zeta(s-1) / zeta(s)) * Product_{p prime} (1 - 1/p^(s-1) - 1/p^s + 1/p^(2*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)/(3*zeta(3))) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523*zeta(2)/(3*zeta(3)) = 0.24444595409976589792... . (End)

A386622 a(n) = Sum_{d|n} n^c(d), where c = A351114.

Original entry on oeis.org

1, 4, 6, 9, 6, 24, 8, 18, 19, 22, 12, 61, 14, 43, 46, 35, 18, 74, 20, 44, 44, 46, 24, 123, 27, 54, 56, 87, 30, 182, 32, 68, 68, 70, 72, 184, 38, 78, 80, 86, 42, 254, 44, 92, 138, 94, 48, 245, 51, 104, 104, 108, 54, 220, 58, 228, 116, 118, 60, 425, 62, 126, 130, 133, 68, 268, 68, 140, 140, 353, 72, 367, 74, 150, 228, 156, 80, 393, 80, 168, 165, 166, 84, 593
Offset: 1

Author

Wesley Ivan Hurt, Jul 27 2025

Keywords

Crossrefs

Cf. A000005 (tau), A020492 (balanced numbers), A351112, A351114, A386591.

Programs

  • Mathematica
    Table[Sum[n^(1 - Ceiling[DivisorSigma[1, d]/EulerPhi[d]] + Floor[DivisorSigma[1, d]/EulerPhi[d]]), {d, Divisors[n]}], {n, 100}]

Formula

a(n) = tau(n) + (n - 1) * Sum_{d|n} c(d), where c = A351114.
a(n) = n*A351112(n) + A386591(n).

A386596 a(n) = Sum_{d|n} d * pi(n/d).

Original entry on oeis.org

0, 1, 2, 4, 3, 10, 4, 12, 10, 15, 5, 31, 6, 21, 25, 30, 7, 45, 8, 48, 34, 29, 9, 83, 24, 34, 39, 65, 10, 102, 11, 71, 48, 42, 52, 134, 12, 47, 56, 128, 13, 141, 14, 94, 109, 55, 15, 199, 43, 108, 70, 109, 16, 169, 74, 174, 78, 65, 17, 300, 18, 71, 148, 160, 87, 204, 19, 137, 92, 216, 20, 351, 21, 82, 173, 153, 100, 238, 22, 308, 139, 89, 23, 409, 109, 94, 111
Offset: 1

Author

Wesley Ivan Hurt, Jul 26 2025

Keywords

Comments

Dirichlet convolution of n and pi(n).
Inverse Möbius transform of A333699(n).

Crossrefs

Cf. A000720 (pi), A333699.

Programs

  • Maple
    f:= proc(n) local d;
          add(d*numtheory:-pi(n/d),d=numtheory:-divisors(n))
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 26 2025
  • Mathematica
    Table[Sum[d*PrimePi[n/d], {d, Divisors[n]}], {n, 100}]

Formula

a(n) = Sum_{d|n} A333699(d).

A386595 a(n) = Sum_{d|n} sigma(d)/phi(d) * c(d), where c = A351114.

Original entry on oeis.org

1, 4, 3, 4, 1, 12, 1, 4, 3, 4, 1, 19, 1, 8, 6, 4, 1, 12, 1, 4, 3, 4, 1, 19, 1, 4, 3, 8, 1, 24, 1, 4, 3, 4, 3, 19, 1, 4, 3, 4, 1, 24, 1, 4, 6, 4, 1, 19, 1, 4, 3, 4, 1, 12, 1, 13, 3, 4, 1, 31, 1, 4, 3, 4, 1, 12, 1, 4, 3, 16, 1, 19, 1, 4, 6, 4, 1, 19, 1, 4, 3, 4, 1, 31, 1, 4, 3, 4, 1, 24, 1, 4, 3, 4, 1, 19, 1, 8, 3, 4
Offset: 1

Author

Wesley Ivan Hurt, Jul 26 2025

Keywords

Comments

For each divisor d of n, add sigma(d)/phi(d) if phi(d) | sigma(d), else add 0.

Crossrefs

Cf. A000010 (phi), A000203 (sigma), A020492 (balanced numbers), A351114.

Programs

  • Mathematica
    Table[Sum[(DivisorSigma[1, d]/EulerPhi[d])*(1 - Ceiling[DivisorSigma[1, d]/EulerPhi[d]] + Floor[DivisorSigma[1, d]/EulerPhi[d]]), {d, Divisors[n]}], {n, 100}]

A386594 a(n) = Sum_{d|n} d * c(n/d), where c = A351114.

Original entry on oeis.org

1, 3, 4, 6, 5, 12, 7, 12, 12, 15, 11, 25, 13, 22, 21, 24, 17, 36, 19, 30, 28, 33, 23, 50, 25, 39, 36, 44, 29, 63, 31, 48, 44, 51, 36, 75, 37, 57, 52, 60, 41, 88, 43, 66, 63, 69, 47, 100, 49, 75, 68, 78, 53, 108, 55, 89, 76, 87, 59, 131, 61, 93, 84, 96, 65, 132, 67, 102, 92, 113, 71, 150, 73, 111, 105, 114, 77, 157, 79, 120, 108, 123, 83, 183, 85, 129, 116
Offset: 1

Author

Wesley Ivan Hurt, Jul 26 2025

Keywords

Comments

Dirichlet convolution of n and c(n), where c = A351114.
For each divisor d of n, add n/d if phi(d) | sigma(d), else add 0.

Crossrefs

Cf. A020492 (balanced numbers), A351114.

Programs

  • Mathematica
    Table[Sum[d*(1 - Ceiling[DivisorSigma[1, n/d]/EulerPhi[n/d]] + Floor[DivisorSigma[1, n/d]/EulerPhi[n/d]]), {d, Divisors[n]}], {n, 100}]

A386592 Sum of the divisors of n that are not balanced numbers.

Original entry on oeis.org

0, 0, 0, 4, 5, 0, 7, 12, 9, 15, 11, 4, 13, 7, 5, 28, 17, 27, 19, 39, 28, 33, 23, 36, 30, 39, 36, 39, 29, 15, 31, 60, 44, 51, 12, 67, 37, 57, 52, 87, 41, 28, 43, 81, 59, 69, 47, 100, 56, 90, 68, 95, 53, 108, 71, 47, 76, 87, 59, 99, 61, 93, 100, 124, 83, 132, 67, 123, 92, 22, 71, 171, 73, 111, 105, 137, 95, 78, 79, 183, 117, 123, 83, 144, 107, 129, 116, 177
Offset: 1

Author

Wesley Ivan Hurt, Jul 26 2025

Keywords

Comments

Sum of the divisors d of n such that phi(d) does not divide sigma(d).
Inverse Möbius transform of n * (1 - c(n)), where c = A351114.

Crossrefs

Cf. A000010 (phi), A000203 (sigma), A351113, A351114, A387333.

Programs

  • Maple
    g:= proc(n) option remember; numtheory:-sigma(n) mod numtheory:-phi(n) <> 0 end proc:
    f:= n -> convert(select(g,numtheory:-divisors(n)),`+`):
    map(f, [$1..100]); # Robert Israel, Aug 26 2025
  • Mathematica
    Table[Sum[d (Ceiling[DivisorSigma[1, d]/EulerPhi[d]] - Floor[DivisorSigma[1, d]/EulerPhi[d]]), {d, Divisors[n]}], {n, 100}]

Formula

a(n) = Sum_{d|n} d * (1 - c(d)), where c = A351114.
a(n) = A000203(n) - A351113(n).

A386591 Number of divisors of n that are not balanced numbers.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 4, 2, 2, 1, 3, 2, 2, 2, 3, 1, 2, 1, 4, 2, 2, 2, 4, 1, 2, 2, 6, 1, 2, 1, 4, 3, 2, 1, 5, 2, 4, 2, 4, 1, 4, 3, 4, 2, 2, 1, 5, 1, 2, 4, 5, 3, 4, 1, 4, 2, 3, 1, 7, 1, 2, 3, 4, 3, 3, 1, 8, 3, 2, 1, 5, 3, 2, 2, 6, 1, 6, 3, 4, 2, 2, 3, 7, 1, 3, 4, 7
Offset: 1

Author

Wesley Ivan Hurt, Jul 26 2025

Keywords

Comments

Number of divisors d of n such that phi(d) does not divide sigma(d).
Inverse Möbius transform of 1 - c(n), where c = A351114.

Crossrefs

Cf. A000005 (tau), A000010 (phi), A000203 (sigma), A020492 (balanced numbers), A351112, A351114.

Programs

  • Maple
    g:= proc(n) option remember; numtheory:-sigma(n) mod numtheory:-phi(n) <> 0 end proc:
    f:= n -> nops(select(g,numtheory:-divisors(n))):
    map(f, [$1..100]); # Robert Israel, Aug 26 2025
  • Mathematica
    Table[Sum[Ceiling[DivisorSigma[1, d]/EulerPhi[d]] - Floor[DivisorSigma[1, d]/EulerPhi[d]], {d, Divisors[n]}], {n, 100}]
  • PARI
    a(n) = sumdiv(n, d, sigma(d)%eulerphi(d) != 0); \\ Michel Marcus, Aug 26 2025

Formula

a(n) = Sum_{d|n} (1 - c(d)), where c = A351114.
a(n) = A000005(n) - A351112(n).

A386589 a(n) = Sum_{d|n} d^c(d), where c = A351114.

Original entry on oeis.org

1, 3, 4, 4, 2, 12, 2, 5, 5, 5, 2, 25, 2, 18, 20, 6, 2, 14, 2, 7, 6, 5, 2, 27, 3, 5, 6, 20, 2, 59, 2, 7, 6, 5, 38, 28, 2, 5, 6, 9, 2, 70, 2, 7, 22, 5, 2, 29, 3, 7, 6, 7, 2, 16, 4, 77, 6, 5, 2, 74, 2, 5, 8, 8, 4, 16, 2, 7, 6, 125, 2, 31, 2, 5, 22, 7, 4, 93, 2, 11, 7, 5, 2, 85, 4, 5, 6, 9, 2, 63, 4, 7, 6, 5, 4, 31, 2, 20, 8, 10
Offset: 1

Author

Wesley Ivan Hurt, Jul 26 2025

Keywords

Comments

Inverse Möbius transform of n^c(n), where c = A351114.
For each divisor d of n, add d if d is a balanced number (A020492), else add 1.

Crossrefs

Cf. A000005 (tau), A020492 (balanced numbers), A351112, A351113, A351114.

Programs

  • Mathematica
    Table[Sum[d^(1 - Ceiling[DivisorSigma[1, d]/EulerPhi[d]] + Floor[DivisorSigma[1, d]/EulerPhi[d]]), {d, Divisors[n]}], {n, 100}]

Formula

a(n) = Sum_{d|n} 1 + (d - 1)*c(d), where c = A351114.
a(n) = A000005(n) + A351113(n) - A351112(n).

A386574 Number of squarefree balanced divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 3, 3, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 3, 1, 6, 1, 2, 2, 2, 2, 4, 1, 2, 2, 2, 1, 6, 1, 2, 3, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 3, 2, 2, 1, 6, 1, 2, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 2, 3, 2, 1, 5, 1, 2, 2, 2, 1, 6, 1, 2, 2, 2, 1, 6, 1, 2, 2, 2, 1, 4, 1, 3, 2, 2
Offset: 1

Author

Wesley Ivan Hurt, Jul 26 2025

Keywords

Comments

Inverse Möbius transform of c(n) * mu(n)^2, where c = A351114.

Crossrefs

Cf. A005117 (squarefree numbers), A020492 (balanced numbers), A351114, A386573.

Programs

  • Mathematica
    Table[Sum[(1 - Ceiling[DivisorSigma[1, d]/EulerPhi[d]] + Floor[DivisorSigma[1, d]/EulerPhi[d]]) MoebiusMu[d]^2, {d, Divisors[n]}], {n, 100}]

Formula

a(n) = Sum_{d|n} c(d) * mu(d)^2, where c = A351114.

A386573 Sum of the squarefree balanced divisors of n.

Original entry on oeis.org

1, 3, 4, 3, 1, 12, 1, 3, 4, 3, 1, 12, 1, 17, 19, 3, 1, 12, 1, 3, 4, 3, 1, 12, 1, 3, 4, 17, 1, 57, 1, 3, 4, 3, 36, 12, 1, 3, 4, 3, 1, 68, 1, 3, 19, 3, 1, 12, 1, 3, 4, 3, 1, 12, 1, 17, 4, 3, 1, 57, 1, 3, 4, 3, 1, 12, 1, 3, 4, 122, 1, 12, 1, 3, 19, 3, 1, 90, 1, 3, 4, 3, 1, 68, 1, 3, 4, 3, 1, 57, 1, 3, 4, 3, 1, 12, 1, 17, 4, 3
Offset: 1

Author

Wesley Ivan Hurt, Jul 26 2025

Keywords

Comments

Inverse Möbius transform of n * c(n) * mu(n)^2, where c = A351114.

Crossrefs

Cf. A005117 (squarefree numbers), A020492 (balanced numbers), A078557, A351114, A386574.

Programs

  • Mathematica
    Table[Sum[d (1 - Ceiling[DivisorSigma[1, d]/EulerPhi[d]] + Floor[DivisorSigma[1, d]/EulerPhi[d]]) MoebiusMu[d]^2, {d, Divisors[n]}], {n, 100}]

Formula

a(n) = Sum_{d|n} d * c(d) * mu(d)^2, where c = A351114.