cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387333 a(n) is the least k having exactly n divisors that are not balanced numbers.

Original entry on oeis.org

1, 4, 8, 16, 20, 48, 40, 72, 80, 120, 144, 180, 320, 240, 440, 432, 540, 360, 792, 864, 900, 960, 1620, 720, 1080, 1920, 2808, 2016, 2340, 1440, 3168, 3024, 2160, 4032, 5616, 2880, 5940, 8100, 3600, 6048, 3960, 5040, 6480, 10920, 7560, 14112, 11700, 7200, 8640, 11880, 13104, 13680, 7920, 10080
Offset: 0

Views

Author

Robert Israel, Aug 26 2025

Keywords

Comments

a(n) is the least k such that A386591(k) = n.

Examples

			a(3) = 16 because 16 has exactly 3 divisors that are not balanced numbers, namely 4, 8 and 16, and no smaller number works.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; numtheory:-sigma(n) mod numtheory:-phi(n) <> 0 end proc:
    f:= n -> nops(select(g,numtheory:-divisors(n))):
    N:= 60: # for a(0) to a(N)
    V:= Array(0..N,-1): count:= 0:
    for i from 1 while count < N+1 do
      v:= f(i);
      if V[v] = -1 then count:= count+1; V[v]:= i; fi
    od:
    convert(V,list);
  • PARI
    a(n) = my(k=1); while (sumdiv(k, d, sigma(d)%eulerphi(d) != 0) != n, k++); k; \\ Michel Marcus, Aug 26 2025

A386622 a(n) = Sum_{d|n} n^c(d), where c = A351114.

Original entry on oeis.org

1, 4, 6, 9, 6, 24, 8, 18, 19, 22, 12, 61, 14, 43, 46, 35, 18, 74, 20, 44, 44, 46, 24, 123, 27, 54, 56, 87, 30, 182, 32, 68, 68, 70, 72, 184, 38, 78, 80, 86, 42, 254, 44, 92, 138, 94, 48, 245, 51, 104, 104, 108, 54, 220, 58, 228, 116, 118, 60, 425, 62, 126, 130, 133, 68, 268, 68, 140, 140, 353, 72, 367, 74, 150, 228, 156, 80, 393, 80, 168, 165, 166, 84, 593
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 27 2025

Keywords

Crossrefs

Cf. A000005 (tau), A020492 (balanced numbers), A351112, A351114, A386591.

Programs

  • Mathematica
    Table[Sum[n^(1 - Ceiling[DivisorSigma[1, d]/EulerPhi[d]] + Floor[DivisorSigma[1, d]/EulerPhi[d]]), {d, Divisors[n]}], {n, 100}]

Formula

a(n) = tau(n) + (n - 1) * Sum_{d|n} c(d), where c = A351114.
a(n) = n*A351112(n) + A386591(n).
Showing 1-2 of 2 results.