cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A241194 Numerator of phi(p-1)/(p-1), where phi is Euler's totient function and p = prime(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 4, 1, 2, 2, 11, 6, 14, 4, 10, 12, 1, 4, 20, 5, 1, 2, 16, 26, 1, 3, 2, 24, 8, 22, 18, 4, 4, 1, 41, 21, 44, 4, 36, 1, 3, 10, 8, 12, 56, 6, 14, 48, 4, 2, 1, 65, 33, 4, 22, 12, 46, 36, 16, 12, 4, 39, 8, 2, 86, 28, 5, 89, 20, 10, 2, 95
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

The denominators are in A241195. The new minima of phi(p-1)/(p-1) occur at primes listed in A241196. The numerator and denominator of those terms are in A241197 and A241198.
For primes p>2, the fraction phi(p - 1)/(p - 1) has the maximum value = 1/2 if and only if p is in A019434. - Geoffrey Critzer, Dec 30 2014

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 117.

Crossrefs

Programs

  • Magma
    [Numerator(EulerPhi(NthPrime(n)-1)/(NthPrime(n)-1)): n in [1..80]]; // Vincenzo Librandi, Apr 06 2015
  • Maple
    seq(numer(numtheory:-phi(ithprime(i)-1)/(ithprime(i)-1)), i=1..100); # Robert Israel, Jan 11 2015
  • Mathematica
    Numerator[Table[EulerPhi[p - 1]/(p - 1), {p, Prime[Range[100]]}]]
  • PARI
    lista(nn) = forprime(p=2, nn, print1(numerator(eulerphi(p-1)/(p-1)), ", ")); \\ Michel Marcus, Jan 03 2015
    

Formula

From Amiram Eldar, Jul 31 2020: (Start)
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{n=1..m} a(n)/A241195(n) = 0.373955... (Artin's constant, A005596).
Asymptotic mean of inverse ratio: lim_{m->oo} (1/m) * Sum_{n=1..m} A241195(n)/a(n) = 2.826419... (Murata's constant, A065485). (End)
a(n) = A076512(A006093(n)). - Ridouane Oudra, Mar 24 2025

A241197 Numerator of new minima of phi(p-1)/(p-1), where phi is Euler's totient function and p = prime(n).

Original entry on oeis.org

1, 1, 1, 4, 8, 16, 288, 256, 192, 768, 384, 3456, 3072, 6912, 6144, 55296, 1658880, 221184, 110592, 3317760, 442368, 13271040
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

The values of p are in A241196. The denominator is in A241198.

Examples

			In decimal, the minima are about 1, 0.5, 0.333333, 0.266667, 0.228571, 0.207792, 0.196856, 0.195569, 0.191808, 0.185194, 0.183469, 0.181713, 0.180525, 0.173812, 0.172676, 0.171024, 0.165507, 0.165127, 0.163588.
		

Crossrefs

Cf. A008330 (phi(prime(n)-1)), A073918, A241194, A241195.

Programs

  • Mathematica
    tMin = {{2, 1}}; Do[p = Prime[n]; tn = EulerPhi[p - 1]/(p - 1); If[tn < tMin[[-1, -1]], AppendTo[tMin, {p, tn}]], {n, 10^7}]; Numerator[Transpose[tMin][[2]]]

Extensions

a(20)-a(22) from Giovanni Resta, Apr 14 2016

A241198 Denominator of new minima of phi(p-1)/(p-1), where phi is Euler's totient function and p = prime(n).

Original entry on oeis.org

1, 2, 3, 15, 35, 77, 1463, 1309, 1001, 4147, 2093, 19019, 17017, 39767, 35581, 323323, 10023013, 1339481, 676039, 20957209, 2800733, 86822723
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

The values of p are in A241196. The numerator is in A241197.

Crossrefs

Cf. A008330 (phi(prime(n)-1)), A073918, A241194, A241195.

Programs

  • Mathematica
    tMin = {{2, 1}}; Do[p = Prime[n]; tn = EulerPhi[p - 1]/(p - 1); If[tn < tMin[[-1, -1]], AppendTo[tMin, {p, tn}]], {n, 10^7}]; Denominator[Transpose[tMin][[2]]]

Extensions

a(20)-a(22) from Giovanni Resta, Apr 14 2016

A293605 Primes p such that phi(p-1) < (p-1)/4.

Original entry on oeis.org

211, 331, 421, 631, 661, 991, 1051, 1171, 1321, 1471, 1951, 2311, 2341, 2521, 2731, 2971, 3121, 3301, 3361, 3511, 3571, 3631, 4201, 4621, 4831, 4951, 5281, 5851, 5881, 6007, 6091, 6271, 6301, 7351, 7411, 7561, 7591, 8191, 8581, 8779, 8821, 8971, 9241, 9283, 9661, 9871, 9901
Offset: 1

Views

Author

Michel Marcus, Oct 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1500]],EulerPhi[#-1]<(#-1)/4&] (* Harvey P. Dale, Oct 27 2018 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (eulerphi(p-1) < (p-1)/4, print1(p, ", ")));
Showing 1-4 of 4 results.