cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A008330 phi(p-1), as p runs through the primes.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 6, 10, 12, 8, 12, 16, 12, 22, 24, 28, 16, 20, 24, 24, 24, 40, 40, 32, 40, 32, 52, 36, 48, 36, 48, 64, 44, 72, 40, 48, 54, 82, 84, 88, 48, 72, 64, 84, 60, 48, 72, 112, 72, 112, 96, 64, 100, 128, 130, 132, 72, 88, 96, 92, 144, 96, 120, 96, 156, 80, 96, 172, 112
Offset: 1

Views

Author

Keywords

Comments

Number of primitive roots in the field with p elements.
Kátai proves that phi(p-1)/(p-1) has a continuous distribution function. - Charles R Greathouse IV, Jul 15 2013
For odd primes p, phi(p-1)<=(p-1)/2 since p has phi(p-1) primitive roots and (p-1)/2 quadratic residues and no primitive root is a quadratic residue. - Geoffrey Critzer, Apr 18 2015

References

  • D. H. Lehmer and Emma Lehmer, "Heuristics Anyone?", in: G. Szegö et al. (eds.), Studies in Mathematical Analysis and Related Topics: Essays in Honor of George Pólya, Stanford University Press, 1962, pp. 202-210.

Crossrefs

Cf. A000010, A005596, A241194, A241195 (fraction phi(p-1)/(p-1)), A338364 (partial products).

Programs

Formula

a(n) = phi(phi(prime(n))). - Robert G. Wilson v, Dec 26 2015
a(n) = phi(A006093(n)). - Michel Marcus, Dec 27 2015
Sum_{k; prime(k) <= x} a(k)/(prime(k)-1) = A * li(x) + O(x/log(x)^D), where A is Artin's constant (A005596), li(x) is the logarithmic integral, and D > 1 (Pillai, 1941; Lehmer and Lehmer 1962; Stephens, 1969). - Amiram Eldar, Jul 23 2025

A065485 Decimal expansion of Murata's constant Product_{p prime} (1 + 1/(p-1)^2).

Original entry on oeis.org

2, 8, 2, 6, 4, 1, 9, 9, 9, 7, 0, 6, 7, 5, 9, 1, 5, 7, 5, 5, 4, 6, 3, 9, 1, 7, 4, 7, 2, 3, 6, 9, 5, 3, 7, 4, 9, 0, 1, 3, 0, 4, 1, 1, 0, 5, 4, 5, 9, 2, 6, 6, 8, 7, 6, 1, 7, 9, 7, 4, 5, 8, 3, 4, 5, 3, 0, 7, 5, 7, 6, 2, 4, 4, 5, 9, 7, 6, 2, 4, 0, 5, 5, 3, 3, 4, 5, 8, 6, 6, 4, 9, 8, 8, 1, 8, 4, 4, 5
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2001; edited Sep 16 2007 at the suggestion of R. J. Mathar

Keywords

Examples

			2.8264199970675915755463917472369537490...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 2.4 and 2.7, pp. 106, 117.

Crossrefs

Programs

  • Mathematica
    digits = 99; terms = 1000; $MaxExtraPrecision = 500; r[n_Integer] := 2 - (1-I)^(n+1) - (1+I)^(n+1); NSum[r[n-1]*PrimeZetaP[n]/n, {n, 2, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10] // Exp // RealDigits[ #, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
  • PARI
    prodeulerrat(1 + 1/(p-1)^2) \\ Vaclav Kotesovec, Sep 19 2020

Formula

Equals lim_{k->oo} (1/pi(k)) * Sum_{p prime, p <= k} (p-1)/phi(p-1), where pi(k) = A000720(k) and phi(k) = A000010(k) (Murata, 1991). - Amiram Eldar, Jul 31 2020
Equals Sum_{k>=1} mu(k)^2/phi(k)^2, where mu is the Möbius function (A008683) and phi is the Euler totient function (A000010). - Amiram Eldar, Jan 14 2022

A241195 Denominator of phi(prime(n)-1)/(prime(n)-1), where phi is Euler's totient function and prime(n) is the n-th prime.

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 2, 3, 11, 7, 15, 3, 5, 7, 23, 13, 29, 15, 33, 35, 3, 13, 41, 11, 3, 5, 51, 53, 3, 7, 7, 65, 17, 69, 37, 15, 13, 3, 83, 43, 89, 15, 95, 3, 7, 33, 35, 37, 113, 19, 29, 119, 15, 5, 2, 131, 67, 15, 69, 35, 141, 73, 51, 31, 13, 79, 33, 7, 173, 87, 11
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

The numerators are in A241194.

Crossrefs

Cf. A000010 (phi), A241194 (numerators).

Programs

  • Magma
    [Denominator(EulerPhi(NthPrime(n)-1)/(NthPrime(n)-1)): n in [1..80]]; // Vincenzo Librandi, Apr 06 2015
  • Maple
    with(numtheory): A241195:=n->denom(phi(ithprime(n)-1) / (ithprime(n)-1)): seq(A241195(n), n=1..100); # Wesley Ivan Hurt, Apr 06 2015
  • Mathematica
    Denominator[Table[EulerPhi[p - 1]/(p - 1), {p, Prime[Range[100]]}]]
  • PARI
    lista(nn) = forprime(p=2, nn, print1(denominator(eulerphi(p-1)/(p-1)), ", ")); \\ Michel Marcus, Jan 03 2015
    

Formula

a(n) = A109395(A006093(n)). - Ridouane Oudra, Mar 24 2025

A241196 Primes p at which phi(p-1)/(p-1) reaches a new minimum, where phi is Euler's totient function.

Original entry on oeis.org

2, 3, 7, 31, 211, 2311, 43891, 78541, 120121, 870871, 1381381, 2282281, 4084081, 13123111, 82192111, 106696591, 300690391, 562582021, 892371481, 6915878971, 71166625531, 200560490131
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

For these p, the numerator and denominator of phi(p-1)/(p-1) are listed in A241197 and A241198. This sequence appears to be related to A073918, the smallest prime which is 1 more than a product of n distinct primes.
By Dirichlet's theorem on primes in arithmetic progressions, for any n there is a prime p such that p-1 is divisible by the primorial A002110(n). Then phi(p-1)/(p-1) <= Product_{i=1..n} (1 - 1/prime(i)). Since Sum_{i >= 1} prime(i) diverges, that goes to 0 as n -> infinity. Thus there are primes with phi(p-1)/(p-1) arbitrarily close to 0. - Robert Israel, Jan 18 2016
5*10^12 < a(23) <= 12234189897931. - Giovanni Resta, Apr 14 2016

References

  • R. K. Guy, Unsolved Problems in Number Theory, A2.

Crossrefs

Cf. A002110, A008330 (phi(prime(n)-1)), A073918, A241194, A241195.

Programs

  • Maple
    m:= infinity:
    p:= 1:
    count:= 0:
    while count < 10 do
      p:= nextprime(p);
      r:= numtheory:-phi(p-1)/(p-1);
      if r < m then
         count:= count+1;
         A[count]:= p;
         m:= r;
      fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Jan 18 2016
  • Mathematica
    tMin = {{2, 1}}; Do[p = Prime[n]; tn = EulerPhi[p - 1]/(p - 1); If[tn < tMin[[-1, -1]], AppendTo[tMin, {p, tn}]], {n, 10^7}]; Transpose[tMin][[1]]

Extensions

a(20) from Dimitri Papadopoulos, Jan 11 2016
a(21)-a(22) from Giovanni Resta, Apr 14 2016

A241197 Numerator of new minima of phi(p-1)/(p-1), where phi is Euler's totient function and p = prime(n).

Original entry on oeis.org

1, 1, 1, 4, 8, 16, 288, 256, 192, 768, 384, 3456, 3072, 6912, 6144, 55296, 1658880, 221184, 110592, 3317760, 442368, 13271040
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

The values of p are in A241196. The denominator is in A241198.

Examples

			In decimal, the minima are about 1, 0.5, 0.333333, 0.266667, 0.228571, 0.207792, 0.196856, 0.195569, 0.191808, 0.185194, 0.183469, 0.181713, 0.180525, 0.173812, 0.172676, 0.171024, 0.165507, 0.165127, 0.163588.
		

Crossrefs

Cf. A008330 (phi(prime(n)-1)), A073918, A241194, A241195.

Programs

  • Mathematica
    tMin = {{2, 1}}; Do[p = Prime[n]; tn = EulerPhi[p - 1]/(p - 1); If[tn < tMin[[-1, -1]], AppendTo[tMin, {p, tn}]], {n, 10^7}]; Numerator[Transpose[tMin][[2]]]

Extensions

a(20)-a(22) from Giovanni Resta, Apr 14 2016

A241198 Denominator of new minima of phi(p-1)/(p-1), where phi is Euler's totient function and p = prime(n).

Original entry on oeis.org

1, 2, 3, 15, 35, 77, 1463, 1309, 1001, 4147, 2093, 19019, 17017, 39767, 35581, 323323, 10023013, 1339481, 676039, 20957209, 2800733, 86822723
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

The values of p are in A241196. The numerator is in A241197.

Crossrefs

Cf. A008330 (phi(prime(n)-1)), A073918, A241194, A241195.

Programs

  • Mathematica
    tMin = {{2, 1}}; Do[p = Prime[n]; tn = EulerPhi[p - 1]/(p - 1); If[tn < tMin[[-1, -1]], AppendTo[tMin, {p, tn}]], {n, 10^7}]; Denominator[Transpose[tMin][[2]]]

Extensions

a(20)-a(22) from Giovanni Resta, Apr 14 2016
Showing 1-6 of 6 results.