cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A241194 Numerator of phi(p-1)/(p-1), where phi is Euler's totient function and p = prime(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 4, 1, 2, 2, 11, 6, 14, 4, 10, 12, 1, 4, 20, 5, 1, 2, 16, 26, 1, 3, 2, 24, 8, 22, 18, 4, 4, 1, 41, 21, 44, 4, 36, 1, 3, 10, 8, 12, 56, 6, 14, 48, 4, 2, 1, 65, 33, 4, 22, 12, 46, 36, 16, 12, 4, 39, 8, 2, 86, 28, 5, 89, 20, 10, 2, 95
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

The denominators are in A241195. The new minima of phi(p-1)/(p-1) occur at primes listed in A241196. The numerator and denominator of those terms are in A241197 and A241198.
For primes p>2, the fraction phi(p - 1)/(p - 1) has the maximum value = 1/2 if and only if p is in A019434. - Geoffrey Critzer, Dec 30 2014

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 117.

Crossrefs

Programs

  • Magma
    [Numerator(EulerPhi(NthPrime(n)-1)/(NthPrime(n)-1)): n in [1..80]]; // Vincenzo Librandi, Apr 06 2015
  • Maple
    seq(numer(numtheory:-phi(ithprime(i)-1)/(ithprime(i)-1)), i=1..100); # Robert Israel, Jan 11 2015
  • Mathematica
    Numerator[Table[EulerPhi[p - 1]/(p - 1), {p, Prime[Range[100]]}]]
  • PARI
    lista(nn) = forprime(p=2, nn, print1(numerator(eulerphi(p-1)/(p-1)), ", ")); \\ Michel Marcus, Jan 03 2015
    

Formula

From Amiram Eldar, Jul 31 2020: (Start)
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{n=1..m} a(n)/A241195(n) = 0.373955... (Artin's constant, A005596).
Asymptotic mean of inverse ratio: lim_{m->oo} (1/m) * Sum_{n=1..m} A241195(n)/a(n) = 2.826419... (Murata's constant, A065485). (End)
a(n) = A076512(A006093(n)). - Ridouane Oudra, Mar 24 2025

A241196 Primes p at which phi(p-1)/(p-1) reaches a new minimum, where phi is Euler's totient function.

Original entry on oeis.org

2, 3, 7, 31, 211, 2311, 43891, 78541, 120121, 870871, 1381381, 2282281, 4084081, 13123111, 82192111, 106696591, 300690391, 562582021, 892371481, 6915878971, 71166625531, 200560490131
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

For these p, the numerator and denominator of phi(p-1)/(p-1) are listed in A241197 and A241198. This sequence appears to be related to A073918, the smallest prime which is 1 more than a product of n distinct primes.
By Dirichlet's theorem on primes in arithmetic progressions, for any n there is a prime p such that p-1 is divisible by the primorial A002110(n). Then phi(p-1)/(p-1) <= Product_{i=1..n} (1 - 1/prime(i)). Since Sum_{i >= 1} prime(i) diverges, that goes to 0 as n -> infinity. Thus there are primes with phi(p-1)/(p-1) arbitrarily close to 0. - Robert Israel, Jan 18 2016
5*10^12 < a(23) <= 12234189897931. - Giovanni Resta, Apr 14 2016

References

  • R. K. Guy, Unsolved Problems in Number Theory, A2.

Crossrefs

Cf. A002110, A008330 (phi(prime(n)-1)), A073918, A241194, A241195.

Programs

  • Maple
    m:= infinity:
    p:= 1:
    count:= 0:
    while count < 10 do
      p:= nextprime(p);
      r:= numtheory:-phi(p-1)/(p-1);
      if r < m then
         count:= count+1;
         A[count]:= p;
         m:= r;
      fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Jan 18 2016
  • Mathematica
    tMin = {{2, 1}}; Do[p = Prime[n]; tn = EulerPhi[p - 1]/(p - 1); If[tn < tMin[[-1, -1]], AppendTo[tMin, {p, tn}]], {n, 10^7}]; Transpose[tMin][[1]]

Extensions

a(20) from Dimitri Papadopoulos, Jan 11 2016
a(21)-a(22) from Giovanni Resta, Apr 14 2016

A241198 Denominator of new minima of phi(p-1)/(p-1), where phi is Euler's totient function and p = prime(n).

Original entry on oeis.org

1, 2, 3, 15, 35, 77, 1463, 1309, 1001, 4147, 2093, 19019, 17017, 39767, 35581, 323323, 10023013, 1339481, 676039, 20957209, 2800733, 86822723
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

The values of p are in A241196. The numerator is in A241197.

Crossrefs

Cf. A008330 (phi(prime(n)-1)), A073918, A241194, A241195.

Programs

  • Mathematica
    tMin = {{2, 1}}; Do[p = Prime[n]; tn = EulerPhi[p - 1]/(p - 1); If[tn < tMin[[-1, -1]], AppendTo[tMin, {p, tn}]], {n, 10^7}]; Denominator[Transpose[tMin][[2]]]

Extensions

a(20)-a(22) from Giovanni Resta, Apr 14 2016
Showing 1-3 of 3 results.