A008330 phi(p-1), as p runs through the primes.
1, 1, 2, 2, 4, 4, 8, 6, 10, 12, 8, 12, 16, 12, 22, 24, 28, 16, 20, 24, 24, 24, 40, 40, 32, 40, 32, 52, 36, 48, 36, 48, 64, 44, 72, 40, 48, 54, 82, 84, 88, 48, 72, 64, 84, 60, 48, 72, 112, 72, 112, 96, 64, 100, 128, 130, 132, 72, 88, 96, 92, 144, 96, 120, 96, 156, 80, 96, 172, 112
Offset: 1
References
- D. H. Lehmer and Emma Lehmer, "Heuristics Anyone?", in: G. Szegö et al. (eds.), Studies in Mathematical Analysis and Related Topics: Essays in Honor of George Pólya, Stanford University Press, 1962, pp. 202-210.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- P. Erdős, On the density of some sequences of numbers, III., J. London Math. Soc. 13 (1938), pp. 119-127.
- Imre Kátai, On distribution of arithmetical functions on the set prime plus one, Compositio Math. 19 (1968), pp. 278-289.
- S. S. Pillai, On the sum function connected with primitive roots, Proceedings of the Indian Academy of Sciences - Section A, Vol. 13. No. 6 (1941), 526-529; alternative link.
- I. J. Schoenberg, Über die asymptotische Verteilung reeller Zahlen mod 1, Mathematische Zeitschrift 28:1 (1928), pp. 171-199.
- P. J. Stephens, An average result for Artin's conjecture, Mathematika, Vol. 16, No. 2 (1969), pp. 178-188.
Crossrefs
Programs
-
Magma
[EulerPhi(NthPrime(n)-1): n in [1..80]]; // Vincenzo Librandi, Apr 06 2015
-
Maple
A008330 := proc(n) numtheory[phi](ithprime(n)-1) ; end proc: seq(A008330(n),n=1..100) ;
-
Mathematica
Table[ EulerPhi[ Prime@n - 1], {n, 70}] (* Robert G. Wilson v, Dec 17 2005 *)
-
PARI
a(n)=eulerphi(prime(n)-1) \\ Charles R Greathouse IV, Dec 08 2011
Formula
a(n) = phi(phi(prime(n))). - Robert G. Wilson v, Dec 26 2015
a(n) = phi(A006093(n)). - Michel Marcus, Dec 27 2015
Sum_{k; prime(k) <= x} a(k)/(prime(k)-1) = A * li(x) + O(x/log(x)^D), where A is Artin's constant (A005596), li(x) is the logarithmic integral, and D > 1 (Pillai, 1941; Lehmer and Lehmer 1962; Stephens, 1969). - Amiram Eldar, Jul 23 2025
Comments