cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Ray Chandler

Ray Chandler's wiki page.

Ray Chandler has authored 682 sequences. Here are the ten most recent ones:

A365418 Partial sums of A301298.

Original entry on oeis.org

1, 6, 15, 29, 48, 71, 99, 132, 169, 211, 258, 309, 365, 426, 491, 561, 636, 715, 799, 888, 981, 1079, 1182, 1289, 1401, 1518, 1639, 1765, 1896, 2031, 2171, 2316, 2465, 2619, 2778, 2941, 3109, 3282, 3459, 3641, 3828, 4019, 4215, 4416, 4621, 4831, 5046, 5265, 5489, 5718, 5951, 6189, 6432, 6679, 6931, 7188, 7449
Offset: 0

Author

Ray Chandler, Sep 03 2023

Keywords

Crossrefs

Cf. A301298.

Programs

  • Mathematica
    LinearRecurrence[{2, -1, 1, -2, 1}, {1, 6, 15, 29, 48}, 50]

Formula

G.f.: -(x^4 + 4*x^3 + 4*x^2 + 4x + 1)/((x - 1)^3*(x^2 + x + 1)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 5.

A365417 Partial sums of A265036.

Original entry on oeis.org

1, 5, 11, 18, 28, 42, 62, 86, 110, 133, 159, 193, 235, 279, 319, 356, 398, 452, 516, 580, 636, 687, 745, 819, 905, 989, 1061, 1126, 1200, 1294, 1402, 1506, 1594, 1673, 1763, 1877, 2007, 2131, 2235, 2328, 2434, 2568, 2720, 2864, 2984, 3091, 3213, 3367, 3541, 3705, 3841, 3962, 4100, 4274, 4470, 4654
Offset: 0

Author

Ray Chandler, Sep 03 2023

Keywords

Crossrefs

Cf. A265036.

Programs

  • Mathematica
    Join[{1,5,11},LinearRecurrence[{5, -12, 18, -18, 12, -5, 1},{18, 28, 42, 62, 86, 110, 133},50]]

Formula

G.f.: (2*x^9 - 6*x^8 + 8*x^7 - 7*x^6 + 2*x^5 + 2*x^4 - 5*x^3 + 2*x^2 - 1)/((x - 1)^3*(x^2 - x + 1)^2).
a(n) = 5*a(n-1) - 12*a(n-2) + 18*a(n-3) - 18*a(n-4) + 12*a(n-5) - 5*a(n-6) + a(n-7) for n > 10.

A362689 Binomial(n+p, n) mod n where p=9.

Original entry on oeis.org

0, 1, 1, 3, 2, 1, 2, 6, 2, 8, 1, 2, 1, 10, 14, 15, 1, 3, 1, 5, 18, 1, 1, 12, 6, 14, 4, 12, 1, 22, 1, 13, 1, 1, 13, 23, 1, 1, 14, 34, 1, 14, 1, 34, 15, 24, 1, 27, 8, 11, 18, 1, 1, 7, 12, 16, 1, 30, 1, 28, 1, 32, 17, 25, 14, 23, 1, 35, 47, 25, 1, 54, 1, 38, 66
Offset: 1

Author

Ray Chandler, Apr 29 2023

Keywords

Programs

  • Mathematica
    Table[Mod[Binomial[n+9,n],n],{n,90}]

Formula

a(n)=binomial(n+9,n) mod n.
For n > 5806081, a(n) = 2*a(n-2903040) - a(n-5806080).

A362688 Binomial(n+p, n) mod n where p=8.

Original entry on oeis.org

0, 1, 0, 3, 2, 3, 2, 6, 1, 8, 1, 6, 1, 10, 9, 15, 1, 1, 1, 5, 18, 1, 1, 12, 6, 14, 1, 12, 1, 12, 1, 13, 12, 1, 13, 19, 1, 1, 27, 34, 1, 0, 1, 34, 10, 24, 1, 27, 8, 11, 18, 1, 1, 1, 12, 16, 39, 30, 1, 48, 1, 32, 10, 25, 14, 45, 1, 35, 24, 25, 1, 46, 1, 38, 66
Offset: 1

Author

Ray Chandler, Apr 29 2023

Keywords

Programs

  • Mathematica
    Table[Mod[Binomial[n+8,n],n],{n,90}]

Formula

a(n)=binomial(n+8,n) mod n.
For n > 645240, a(n) = 2*a(n-322560) - a(n-645120).

A362687 Binomial(n+p, n) mod n where p=7.

Original entry on oeis.org

0, 0, 0, 2, 2, 0, 2, 3, 1, 8, 1, 0, 1, 10, 9, 5, 1, 10, 1, 10, 18, 12, 1, 15, 6, 14, 1, 12, 1, 12, 1, 9, 12, 18, 13, 10, 1, 20, 27, 19, 1, 0, 1, 12, 10, 24, 1, 45, 8, 36, 18, 14, 1, 28, 12, 23, 39, 30, 1, 48, 1, 32, 10, 17, 14, 12, 1, 18, 24, 60, 1, 19, 1
Offset: 1

Author

Ray Chandler, Apr 29 2023

Keywords

Programs

  • Mathematica
    Table[Mod[Binomial[n+7,n],n],{n,90}]

Formula

a(n)=binomial(n+7,n) mod n.
For n > 10122, a(n) = 2*a(n-5040) - a(n-10080).

A362686 Binomial(n+p, n) mod n where p=6.

Original entry on oeis.org

0, 0, 0, 2, 2, 0, 1, 3, 1, 8, 1, 0, 1, 8, 9, 5, 1, 10, 1, 10, 15, 12, 1, 15, 6, 14, 1, 8, 1, 12, 1, 9, 12, 18, 8, 10, 1, 20, 27, 19, 1, 36, 1, 12, 10, 24, 1, 45, 1, 36, 18, 14, 1, 28, 12, 15, 39, 30, 1, 48, 1, 32, 1, 17, 14, 12, 1, 18, 24, 50, 1, 19, 1, 38
Offset: 1

Author

Ray Chandler, Apr 29 2023

Keywords

Programs

  • Mathematica
    Table[Mod[Binomial[n+6, n], n], {n, 90}]

Formula

a(n)=binomial(n+6,n) mod n.
For n > 1452, a(n) = 2*a(n-720) - a(n-1440).

A331671 Number of Pythagorean triangles with sum of legs n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1
Offset: 1

Author

Ray Chandler, Feb 26 2020

Keywords

Crossrefs

A330174 Number of primitive Pythagorean triangles with sum of legs n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2
Offset: 1

Author

Ray Chandler, Feb 15 2020

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Block[{ps,sps}, ps=First/@FactorInteger[n];
    sps=Select[ps,MemberQ[{1,7},Mod[#,8]]&];
    If[sps==ps&&n!=1,2^(Length[ps]-1),0]];  Table[f[n],{n,120}]

A331019 a(n) is the least k such that the denominator(sigma(sigma(k*n))/(k*n)) equals n.

Original entry on oeis.org

1, 15, 1, 8, 1, 144, 1, 16, 1, 1, 1, 8, 1, 255, 3, 16, 1, 12, 1, 2, 7, 1, 1, 288, 1, 18, 21, 8, 1, 84, 1, 13, 1, 11, 1, 4096, 1, 4, 3, 270, 1, 2448, 1, 2, 3, 1, 1, 16, 1, 420, 3, 1, 1, 124, 3, 16, 3, 128, 1, 616, 1, 85, 3, 16, 1, 1, 1, 8, 3, 1, 1, 32, 1, 64
Offset: 1

Author

Ray Chandler, Jan 09 2020

Keywords

Comments

a(n) is the least k such that the A318060(k*n) equals n.

Crossrefs

Cf. A000203 (sigma), A051027 (sigma(sigma)), A318060.

Programs

  • PARI
    a(n) = my(k=n); while (denominator(sigma(sigma(k))/k) != n, k+=n); k/n;

Formula

a(n) = A331033(n)/n.

A329148 Composite hypotenuses of primitive Pythagorean triangles (A120961) that are not circumdiameters of non-Pythagorean primitive Heronian triangles (A285579).

Original entry on oeis.org

1073, 1537, 1961, 3277, 4181, 5713, 7289, 7373, 8633, 9193, 9773, 10001, 10397, 11729, 13837, 14393, 14837, 14893, 15397, 16153, 16781, 17777, 17861, 19517, 20513, 20609, 20617, 20737, 21053, 21253, 21473, 21953, 22601, 23141, 23393
Offset: 1

Author

Ray Chandler, Dec 04 2019

Keywords

Comments

Inspired by comments from Frank M Jackson in A285579.
All of the 1378 terms in the b-file are the product of two distinct Pythagorean primes.

Crossrefs