A058529 Numbers whose prime factors are all congruent to +1 or -1 modulo 8.
1, 7, 17, 23, 31, 41, 47, 49, 71, 73, 79, 89, 97, 103, 113, 119, 127, 137, 151, 161, 167, 191, 193, 199, 217, 223, 233, 239, 241, 257, 263, 271, 281, 287, 289, 311, 313, 329, 337, 343, 353, 359, 367, 383, 391, 401, 409, 431, 433, 439, 449, 457, 463, 479, 487
Offset: 1
References
- B Berggren, Pytagoreiska trianglar. Tidskrift för elementär matematik, fysik och kemi, 17:129-139, 1934.
- Olaf Delgado-Friedrichs and Michael O’Keeffe, Edge-transitive lattice nets, Acta Cryst. (2009). A65, 360-363.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- F. Barnes, primitive Pythagorean triangles where a-b is a constant.
- Johannes Boot, Draft English translation of B Berggren's (1934) article "Pytagoreiska Trianglar", ResearchGate 2017.
- K. S. Brown, Pythagorean graphs.
- O. Delgado-Friedrichs and M. O'Keeffe, Edge-transitive lattice nets, Acta Cryst. A, A65 (2009), 360-363.
- B. Frénicle, Méthode pour trouver la solution des problèmes par les exclusions, 44 pages (see p. 31). In Divers ouvrages de mathematique .. Par Messieurs de l'Academie Royale des Sciences, in-fol, 6+518+1PP, Paris, 1693. - _Paul Curtz_, Sep 06 2008
Crossrefs
Programs
-
Haskell
a058529 n = a058529_list !! (n-1) a058529_list = filter (\x -> all (`elem` (takeWhile (<= x) a001132_list)) $ a027748_row x) [1..] -- Reinhard Zumkeller, Jan 29 2013
-
Mathematica
Select[Range[500], Union[Abs[Mod[Transpose[FactorInteger[#]][[1]], 8, -1]]] == {1} &] (* T. D. Noe, Feb 07 2012 *)
-
PARI
is(n)=my(f=factor(n)[,1]%8); for(i=1,#f, if(f[i]!=1 && f[i]!=7, return(0))); 1 \\ Charles R Greathouse IV, Aug 01 2016
Formula
a(n) = |A-B|=|j^2-2*k^2|, j=(2*n-1), k,n in N, GCD(j,k)=1, the absolute difference between primitive Pythagorean triple legs (sides adjacent to the right angle). - Roger M Ellingson, Dec 09 2023
Extensions
More terms from Naohiro Nomoto, Jul 02 2001
Edited by Franklin T. Adams-Watters, Jun 24 2011
Duplicated comment removed and name rewritten by Wolfdieter Lang, Feb 17 2015
Comments