cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A222946 Triangle for hypotenuses of primitive Pythagorean triangles.

Original entry on oeis.org

5, 0, 13, 17, 0, 25, 0, 29, 0, 41, 37, 0, 0, 0, 61, 0, 53, 0, 65, 0, 85, 65, 0, 73, 0, 89, 0, 113, 0, 85, 0, 97, 0, 0, 0, 145, 101, 0, 109, 0, 0, 0, 149, 0, 181, 0, 125, 0, 137, 0, 157, 0, 185, 0, 221, 145, 0, 0, 0, 169, 0, 193, 0, 0, 0, 265, 0, 173, 0, 185, 0, 205, 0, 233, 0, 269, 0, 313, 197, 0, 205, 0, 221, 0, 0, 0, 277, 0, 317, 0, 365
Offset: 2

Views

Author

Wolfdieter Lang, Mar 21 2013

Keywords

Comments

For primitive Pythagorean triples (x,y,z) see the Niven et al. reference, Theorem 5.5, p. 232, and the Hardy-Wright reference, Theorem 225, p. 190.
Here a(n,m) = 0 for non-primitive Pythagorean triangles.
There is a one-to-one correspondence between the values n and m of this number triangle for which a(n,m) does not vanish and primitive solutions of x^2 + y^2 = z^2 with y even, namely x = n^2 - m^2, y = 2*n*m and z = n^2 + m^2.
The diagonal sequence is given by a(n,n-1) = A001844(n-1), n >= 2.
The row sums of this triangle are 5, 13, 42, 70, 98, 203, 340, 327, 540, ...
a(n,k) = A055096(n-1,k) * ((n+k) mod 2) * A063524 (gcd(n,k)): terms in A055096 that are not hypotenuses in primitive Pythagorean triangles, are replaced by 0. - Reinhard Zumkeller, Mar 23 2013
The number of non-vanishing entries in row n is A055034(n). - Wolfdieter Lang, Mar 24 2013
The non-vanishing entries when ordered according to nondecreasing leg sums x+y (see A225949 and A198441) produce (with multiplicities) A198440. - Wolfdieter Lang, May 22 2013
a(n, m) also gives twice the member s(n, m) of the triple (r(n, m), s(n, m), t(n, m)) with squares r(n, m)^2, s(n, m)^2 and t(n, m)^2 in arithmetic progression with common difference A(n, m) = A249869(n, m), the area of the primitive Pythagorean triangle, or 0 if there is no such triangle. The other members are given by 2*r(n, m) = A278717(n, m) and 2*t(n, m) = A225949(n, m). See A278717 for details and the Keith Conrad reference there. - Wolfdieter Lang, Nov 30 2016

Examples

			The triangle a(n,m) begins:
n\m   1   2   3   4   5   6   7   8   9  10  11  12   13 ...
2:    5
3:    0  13
4:   17   0  25
5:    0  29   0  41
6:   37   0   0   0  61
7:    0  53   0  65   0  85
8:   65   0  73   0  89   0 113
9:    0  85   0  97   0   0   0 145
10: 101   0 109   0   0   0 149   0 181
11:   0 125   0 137   0 157   0 185   0 221
12: 145   0   0   0 169   0 193   0   0   0 265
13:   0 173   0 185   0 205   0 233   0 269   0 313
14: 197   0 205   0 221   0   0   0 277   0 317   0  365
...
------------------------------------------------------------
a(7,4) = 7^2 + 4^2 = 49 + 16 = 65.
a(8,1) = 8^2 + 1^2 = 64 +  1 = 65.
a(3,1) = 0 because n and m are both odd.
a(4,2) = 0 because n and m are both even.
a(6,3) = 0 because gcd(6,3) = 3 (not 1).
The primitive triangle for (n,m) = (2,1) is (x,y,z) = (3,4,5).
The primitive triangle for (n,m) = (7,4) is (x,y,z) = (33,56,65).
The primitive triangle for (n,m) = (8,1) is (x,y,z) = (63,16,65).
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.

Crossrefs

Cf. A020882 (ordered nonzero values a(n,m) with multiplicity).
Cf. A249866, A225950 (odd legs), A225951 (perimeters), A225952 (even legs), A225949 (leg sums), A249869 (areas), A258149 (absolute leg differences), A278717 (leg differences).

Programs

  • Haskell
    a222946 n k = a222946_tabl !! (n-2) !! (k-1)
    a222946_row n = a222946_tabl !! (n-2)
    a222946_tabl = zipWith p [2..] a055096_tabl where
       p x row = zipWith (*) row $
                 map (\k -> ((x + k) `mod` 2) * a063524 (gcd x k)) [1..]
    -- Reinhard Zumkeller, Mar 23 2013

Formula

a(n,m) = n^2 + m^2 if n > m >= 1, gcd(n,m) = 1, and n and m are integers of opposite parity (i.e., (-1)^(n+m) = -1), otherwise a(n,m) = 0.

A198384 First of a triple of squares in arithmetic progression.

Original entry on oeis.org

1, 4, 49, 9, 49, 16, 289, 196, 25, 1, 36, 196, 529, 49, 961, 441, 64, 1156, 81, 784, 441, 100, 2401, 289, 121, 2209, 4, 144, 1225, 529, 169, 784, 2601, 2116, 5041, 196, 3844, 1764, 49, 225, 256, 1681, 1225, 289, 1681, 2401, 6241, 9, 4624, 324, 9409, 361
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 24 2011

Keywords

Programs

  • Haskell
    a198384 n = a198384_list !! (n-1)
    a198384_list = map (^ 2) a198388_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    Flatten[DeleteCases[triples /@ Range[wmax], {}], 2][[All, 1]] (* Jean-François Alcover, Oct 19 2021 *)

Formula

a(n) = A198388(n)^2.
A198385(n) - a(n) = A198386(n) - A198385(n) = A198387(n).
A198435(n) = a(A198409(n)).

Extensions

Thanks to Benoit Jubin, who had the idea for sequences A198384 .. A198390 and A198435 .. A198441.

A198409 Positions in sequences A198384, A198385 and A198386 to indicate triples of squares in arithmetic progression, that are not multiples of earlier triples.

Original entry on oeis.org

1, 3, 5, 7, 10, 13, 15, 23, 24, 26, 30, 35, 39, 42, 45, 47, 51, 54, 62, 69, 70, 72, 83, 84, 88, 97, 98, 102, 107, 114, 115, 124, 126, 129, 136, 141, 142, 143, 156, 157, 167, 169, 172, 177, 181, 188, 191, 201, 205, 208, 214, 218, 229, 230, 237, 244, 249, 253
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Comments

A198435(n) = A198384(a(n)); A198439(n) = A198388(a(n));
A198436(n) = A198385(a(n)); A198440(n) = A198389(a(n));
A198437(n) = A198386(a(n)); A198441(n) = A198390(a(n));
A198438(n) = A198387(a(n)).

Programs

  • Haskell
    import Data.List (elemIndices)
    a198409 n = a198409_list !! (n-1)
    a198409_list = map (+ 1) $ elemIndices 1 $ map a008966 $
       zipWith gcd a198384_list $ zipWith gcd a198385_list a198386_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    Position[tt, t_List /; SquareFreeQ[GCD@@t]] // Flatten (* Jean-François Alcover, Oct 24 2021 *)

Formula

A225949 Triangle for sum of the two legs (catheti) of primitive Pythagorean triangles.

Original entry on oeis.org

7, 0, 17, 23, 0, 31, 0, 41, 0, 49, 47, 0, 0, 0, 71, 0, 73, 0, 89, 0, 97, 79, 0, 103, 0, 119, 0, 127, 0, 113, 0, 137, 0, 0, 0, 161, 119, 0, 151, 0, 0, 0, 191, 0, 199, 0, 161, 0, 193, 0, 217, 0, 233, 0, 241, 167, 0, 0, 0, 239, 0, 263, 0, 0, 0, 287, 0, 217, 0, 257, 0, 289, 0, 313, 0, 329, 0, 337, 223, 0, 271, 0, 311, 0, 0, 0, 367, 0, 383, 0, 391
Offset: 2

Views

Author

Wolfdieter Lang, May 21 2013

Keywords

Comments

For primitive Pythagorean triples (x,y,z) see the Niven et al. reference, Theorem 5.5, p. 232, and the Hardy-Wright reference, Theorem 225, p. 190.
Here a(n,m) = 0 for non-primitive Pythagorean triangles.
There is a one-to-one correspondence between the values n and m of this number triangle for which a(n,m) does not vanish and primitive solutions of x^2 + y^2 = z^2 with y even, namely x = n^2 - m^2, y = 2*n*m and z = n^2 + m^2. The mirror triangles with x even are not considered here. Therefore a(n,m) = n^2 - m^2 + 2*n*m (for these solutions).
The number of non-vanishing entries in row n is A055034(n).
The sequence of the main diagonal is 2*n^2-1 = A056220(n), n>= 2.
The sequence of the main diagonal is j^2 + k^2 - 2 or 2*j*k if n>=2 and j = n + sqrt(2)/2 and k = n - sqrt(2)/2. - Avi Friedlich, Mar 30 2015
If the 0 entries are eliminated and the numbers are ordered increasingly (keeping multiple entries) the sequence becomes A198441(n-1), n>=2. If multiple entries are recorded only once this becomes A058529 (a proper subsequence of A118905). Note that all leg sums <= N are certainly reached if one considers rows n = 2, ..., floor(-1 + sqrt(N+2)).
a(n, m) also gives twice the member t(n, m) of the triple (r(n, m), s(n, m), t(n, m)) with squares r(n, m)^2, s(n, m)^2 and t(n, m)^2 in arithmetic progression with common difference A(n, m) = A249869(n, m), the area of the primitive Pythagorean triangle, or 0 if there is no such triangle. The other members are given by 2*r(n, m) = A278717(n, m) and 2*s(n, m) = A222946(n, m). See A278717 for details and the Keith Conrad reference. - Wolfdieter Lang, Nov 30 2016

Examples

			The triangle a(n,m) begins:
n\m   1   2   3   4   5   6    7    8    9   10   11 ...
2:    7
3:    0  17
4:   23   0  31
5:    0  41   0  49
6:   47   0   0   0  71
7:    0  73   0  89   0  97
8:   79   0 103   0 119   0  127
9:    0 113   0 137   0   0    0  161
10: 119   0 151   0   0   0  191    0  199
11:   0 161   0 193   0 217    0  233    0  241
12: 167   0   0   0 239   0  263    0    0    0  287
...
---------------------------------------------------------
The primitive triangle for (n,m) = (2,1) is (x,y,z) = (3,4,5), with a(2,1) = 3 + 4 = 7.
The primitive triangle for (n,m) = (7,4) is (x,y,z) = (33,56,65), with a(7,4) = 33 + 56 = 89.
The primitive triangle for (n,m) = (8,1) is (x,y,z) = (63,16,65), with a(8,1) = 63 + 16 = 79.
All primitive Pythagorean triangles with leg sums <= 167 are certainly covered by this triangle (rows n = 2..12), and the multiplicities are also correct, e.g., 119 appears twice.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.

Crossrefs

Cf. A222946 (hypotenuses), A222951 (perimeters), A056220 (main diagonals), A198441 (no zeros, ordered), A258149 (absolute leg differences), A278717 (leg differences).

Programs

  • Mathematica
    T[n_, m_] := If[n > m >= 1 && GCD[n, m] == 1 && (-1)^(n+m) == -1, (n+m)^2 - 2 m^2, 0];
    Table[T[n, m], {n, 2, 14}, {m, 1, n-1}] // Flatten (* Jean-François Alcover, Oct 22 2021 *)

Formula

a(n,m) = (n+m)^2 - 2*m^2 if n > m >= 1, gcd(n,m) = 1, and n and m are integers of opposite parity (i.e., (-1)^(n+m) = -1); otherwise a(n,m) = 0.

A198390 Square root of third term of a triple of squares in arithmetic progression.

Original entry on oeis.org

7, 14, 17, 21, 23, 28, 31, 34, 35, 41, 42, 46, 47, 49, 49, 51, 56, 62, 63, 68, 69, 70, 71, 73, 77, 79, 82, 84, 85, 89, 91, 92, 93, 94, 97, 98, 98, 102, 103, 105, 112, 113, 115, 119, 119, 119, 119, 123, 124, 126, 127, 133, 136, 137, 138, 140, 141, 142, 146
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 24 2011

Keywords

Comments

There is a connection to the leg sums of Pythagorean triangles.
See a comment on the primitive case under A198439, which applies mutatis mutandis. - Wolfdieter Lang, May 23 2013
Are these just the positive multiples of A001132? - Charles R Greathouse IV, May 28 2013
n appears A331671(n) times. - Ray Chandler, Feb 26 2020

Examples

			Connection to leg sums of Pythagorean triangles: a(2) = 14 because (in the notation of the Zumkeller link) (u,v,w)= (2,10,14) = 2*(1,5,7), and this corresponds to the non-primitive Pythagorean triangle 2*(x=(7-1)/1,y=(1+7)/2,z=5) = 2*(3,4,5) with leg sum 2*(3+4) = 14. - _Wolfdieter Lang_, May 23 2013
		

Crossrefs

Programs

  • Haskell
    a198390 n = a198390_list !! (n-1)
    a198390_list = map (\(,,x) -> x) ts where
       ts = [(u,v,w) | w <- [1..], v <- [1..w-1], u <- [1..v-1],
                       w^2 - v^2 == v^2 - u^2]
    
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
    Flatten[DeleteCases[triples /@ Range[wmax], {}], 2][[All, 3]] (* Jean-François Alcover, Oct 20 2021 *)
  • PARI
    is(n)=my(t=n^2);forstep(i=2-n%2,n-2,2, if(issquare((t+i^2)/2), return(1))); 0 \\ Charles R Greathouse IV, May 28 2013

Formula

A198386(n) = a(n)^2.
A198441(n) = a(A198409(n)).

A198437 Third term of a triple of squares in arithmetic progression, which is not a multiple of another triple in (A198384,A198385,A198386).

Original entry on oeis.org

49, 289, 529, 961, 1681, 2209, 2401, 5041, 5329, 6241, 7921, 9409, 10609, 12769, 14161, 14161, 16129, 18769, 22801, 25921, 25921, 27889, 36481, 37249, 39601, 47089, 47089, 49729, 54289, 57121, 58081, 66049, 69169, 73441, 78961, 82369, 82369, 83521, 96721
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Crossrefs

Programs

  • Haskell
    a198437 n = a198437_list !! (n-1)
    a198437_list = map a198386 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    DeleteCases[tt, t_List /; GCD @@ t>1 && MemberQ[tt, t/GCD @@ t]][[All, 3]] (* Jean-François Alcover, Oct 20 2021 *)

Formula

a(n) = A198441(n)^2 = A198386(A198409(n));
a(n) - A198436(n) = A198436(n) - A198435(n) = A198438(n).

A198439 Square root of first term of a triple of squares in arithmetic progression that is not a multiple of another triple in (A198384, A198385, A198386).

Original entry on oeis.org

1, 7, 7, 17, 1, 23, 31, 49, 17, 47, 23, 71, 7, 41, 41, 79, 97, 7, 31, 73, 127, 119, 89, 17, 161, 47, 113, 167, 119, 1, 199, 49, 73, 103, 161, 223, 241, 23, 31, 103, 89, 191, 287, 151, 217, 287, 137, 233, 71, 337, 79, 137, 17, 281, 359, 391, 49, 113, 119, 217
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Comments

This sequence gives the values |x-y| of primitive Pythagorean triangles (x,y,z) with even y ordered according to the nondecreasing values of the leg sums x+y (called w in the Zumkeller link, and given in A198441). For the equivalence to primitive Pythagorean triples with even y see a comment in A198441. - Wolfdieter Lang, May 22 2013

Examples

			From _Wolfdieter Lang_, May 22 2013: (Start)
Primitive Pythagorean triple (x,y,z), y even, connection:
a(2) = 7 because the triple with second smallest leg sum x+y = 17 = A198441(2) is (5,12,13), and |x - y| = y - x = 12 - 5 = 7.
a(3) = 7 because x + y = A198441(3) = 23, (x,y,z) = (15,8,17) (the primitive triple with third smallest leg sum), and |x-y| = x - y = 15 - 8 = 7. (End)
		

Programs

  • Haskell
    a198439 n = a198439_list !! (n-1)
    a198439_list = map a198388 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    DeleteCases[tt, t_List /; GCD@@t>1 && MemberQ[tt, t/GCD@@t]][[All, 1]] (* Jean-François Alcover, Oct 22 2021 *)

Formula

A198435(n) = a(n)^2; a(n) = A198388(A198409(n)).

A198388 Square root of first term of a triple of squares in arithmetic progression.

Original entry on oeis.org

1, 2, 7, 3, 7, 4, 17, 14, 5, 1, 6, 14, 23, 7, 31, 21, 8, 34, 9, 28, 21, 10, 49, 17, 11, 47, 2, 12, 35, 23, 13, 28, 51, 46, 71, 14, 62, 42, 7, 15, 16, 41, 35, 17, 41, 49, 79, 3, 68, 18, 97, 19, 56, 7, 42, 20, 69, 98, 34, 21, 93, 31, 63, 22, 85, 94, 23, 49, 73
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 24 2011

Keywords

Comments

There is a connection to |x-y| of Pythagorean triangles (x,y,z). See a comment on the primitive Pythagorean triangle case under A198441 which applies mutatis mutandis. - Wolfdieter Lang, May 23 2013

Examples

			Connection to Pythagorean triangles: a(2) = 2 because (in the notation of the Zumkeller link) (u,v,w) = 2*(1,5,7) and the corresponding Pythagorean triangle is 2*((7-1)/2,(1+7)/2,5) = 2*(3,4,5) with |x-y| = 2*(4-3) = 2. - _Wolfdieter Lang_, May 23 2013
		

Crossrefs

Programs

  • Haskell
    a198388 n = a198388_list !! (n-1)
    a198388_list = map (\(x,,) -> x) ts where
       ts = [(u,v,w) | w <- [1..], v <- [1..w-1], u <- [1..v-1],
                       w^2 - v^2 == v^2 - u^2]
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
    Flatten[DeleteCases[triples /@ Range[wmax], {}], 2][[All, 1]] (* Jean-François Alcover, Oct 20 2021 *)

Formula

A198384(n) = a(n)^2.
A198439(n) = a(A198409(n)).

A198389 Square root of second term of a triple of squares in arithmetic progression.

Original entry on oeis.org

5, 10, 13, 15, 17, 20, 25, 26, 25, 29, 30, 34, 37, 35, 41, 39, 40, 50, 45, 52, 51, 50, 61, 53, 55, 65, 58, 60, 65, 65, 65, 68, 75, 74, 85, 70, 82, 78, 73, 75, 80, 85, 85, 85, 89, 91, 101, 87, 100, 90, 113, 95, 104, 97, 102, 100, 111, 122, 106, 105, 123, 109
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 24 2011

Keywords

Comments

Apart from its initial 1, A001653 is a subsequence: for all n>1 exists an m such that A198388(m)=1 and a(m)=A001653(n). [observed by Zak Seidov, Reinhard Zumkeller, Oct 25 2011]
There is a connection to hypotenuses of Pythagorean triangles. See a comment for the primitive case on A198441 which applies here mutatis mutandis. - Wolfdieter Lang, May 23 2013

Examples

			Connection to Pythagorean triangle hypotenuses: a(20) = 10 because (in the notation of the Zumkeller link) (u,v,w) = 2*(1,5,7) and the Pythagorean triangle is 2*(x=(7-1)/2,y=(1+7)/2,5) = 2*(3,4,5) with hypotenuse 2*5 = 10. - _Wolfdieter Lang_, May 23 2013
		

Crossrefs

Programs

  • Haskell
    a198389 n = a198389_list !! (n-1)
    a198389_list = map (\(,x,) -> x) ts where
       ts = [(u,v,w) | w <- [1..], v <- [1..w-1], u <- [1..v-1],
                       w^2 - v^2 == v^2 - u^2]
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
    Flatten[DeleteCases[triples /@ Range[wmax], {}], 2][[All, 2]] (* Jean-François Alcover, Oct 20 2021 *)

Formula

A198385(n) = a(n)^2.
A198440(n) = a(A198409(n)).

A198440 Square root of second term of a triple of squares in arithmetic progression that is not a multiple of another triple in (A198384, A198385, A198386).

Original entry on oeis.org

5, 13, 17, 25, 29, 37, 41, 61, 53, 65, 65, 85, 73, 85, 89, 101, 113, 97, 109, 125, 145, 145, 149, 137, 181, 157, 173, 197, 185, 169, 221, 185, 193, 205, 229, 257, 265, 205, 221, 233, 241, 269, 313, 265, 293, 325, 277, 317, 281, 365, 289, 305, 305, 365, 401
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Comments

This sequence gives the hypotenuses of primitive Pythagorean triangles (with multiplicities) ordered according to nondecreasing values of the leg sums x+y (called w in the Zumkeller link, given by A198441). See the comment on the equivalence to primitive Pythagorean triangles in A198441. For the values of these hypotenuses ordered nondecreasingly see A020882. See also the triangle version A222946. - Wolfdieter Lang, May 23 2013

Examples

			From _Wolfdieter Lang_, May 22 2013: (Start)
Primitive Pythagorean triangle (x,y,z), even y, connection:
a(8) = 61 because the leg sum x+y = A198441(8) = 71 and due to A198439(8) = 49 one has y = (71+49)/2 = 60 is even, hence x = (71-49)/2 = 11 and z = sqrt(11^2 + 60^2) = 61. (End)
		

Crossrefs

Programs

  • Haskell
    a198440 n = a198440_list !! (n-1)
    a198440_list = map a198389 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    DeleteCases[tt, t_List /; GCD@@t > 1 && MemberQ[tt, t/GCD@@t]][[All, 2]] (* Jean-François Alcover, Oct 22 2021 *)

Formula

A198436(n) = a(n)^2; a(n) = A198389(A198409(n)).
Showing 1-10 of 11 results. Next