cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Zak Seidov

Zak Seidov's wiki page.

Zak Seidov has authored 3624 sequences. Here are the ten most recent ones:

A386295 Primes p such that p+1 is a triprime and 2*p+1 is prime.

Original entry on oeis.org

11, 29, 41, 113, 173, 281, 641, 653, 761, 1901, 2273, 2693, 2741, 3413, 3593, 5441, 6053, 6113, 6521, 6581, 7121, 7841, 9293, 9473, 10253, 10733, 12101, 12821, 14081, 14621, 15233, 16493, 19301, 19373, 19553, 19913, 20441, 20693, 21341, 21701, 22433, 24473, 27281, 27581, 27893, 28793, 28901
Offset: 1

Author

Zak Seidov and Robert Israel, Jul 17 2025

Keywords

Comments

Sophie Germain primes of the form p*q*r - 1, where p, q and r are primes.
Except for 11, all terms == 5 (mod 12).

Examples

			a(3) = 41 is a term because it is prime, 41 + 1 = 42 = 2 * 3 * 7 is a triprime, and 41 * 2 + 1 = 83 is prime.
		

Crossrefs

Cf. A014612.
Intersection of A005384 and A063639.

Programs

  • Maple
    select(p -> isprime(p) and isprime(2*p+1) and numtheory:-bigomega(p+1) = 3, [seq(i,i=3..30000,2)]);
  • Mathematica
    s= {}; Do[p = Prime[k]; If[3 == PrimeOmega[p + 1] && PrimeQ[2*p +1], AppendTo[s, p]], {k, 2000}];s

A384940 Odd semiprimes interleaved with even semiprimes.

Original entry on oeis.org

9, 4, 15, 6, 21, 10, 25, 14, 33, 22, 35, 26, 39, 34, 49, 38, 51, 46, 55, 58, 57, 62, 65, 74, 69, 82, 77, 86, 85, 94, 87, 106, 91, 118, 93, 122, 95, 134, 111, 142, 115, 146, 119, 158, 121, 166, 123, 178, 129, 194, 133, 202, 141, 206, 143, 214, 145, 218, 155, 226, 159, 254, 161, 262, 169, 274, 177
Offset: 1

Author

Zak Seidov and Robert Israel, Jun 13 2025

Keywords

Examples

			a(3) = A046315(2) = 15 is the second odd semiprime.
a(4) = A100484(2) = 6 is the second even semiprime.
		

Crossrefs

Programs

  • Maple
    A:= select(t -> numtheory:-bigomega(t)=2, [seq(i,i=1..1000,2)]):
    B:= select(t -> numtheory:-bigomega(t)=2, [seq(i,i=2..1000,2)]):
    seq(op([A[i],B[i]]),i=1..min(nops(A),nops(B)));
  • Python
    from math import isqrt
    from sympy import primepi, primerange, prime
    def A384940(n):
        if n&1:
            m = n+1>>1
            def bisection(f,kmin=0,kmax=1):
                while f(kmax) > kmax: kmax <<= 1
                kmin = kmax >> 1		
                while kmax-kmin > 1:
                    kmid = kmax+kmin>>1
                    if f(kmid) <= kmid:
                        kmax = kmid
                    else:
                        kmin = kmid
                return kmax
            def f(x): return int(m+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(3, s+1)))
            return bisection(f,m,m)
        else:
            return prime(n>>1)<<1 # Chai Wah Wu, Jun 17 2025

Formula

a(2*k-1) = A046315(k).
a(2*k) = A100484(k).

A383665 a(n) is the least number k such that k, k - s and k + s all have n prime divisors, counted with multiplicity, where s is the sum of the decimal digits of k.

Original entry on oeis.org

15, 102, 204, 408, 3078, 14496, 88448, 128768, 6857312, 111411968, 844844000, 6059394048, 13384999936, 948305874880, 6373064359936, 186505184249928
Offset: 2

Author

Zak Seidov and Robert Israel, May 04 2025

Keywords

Comments

k - s is always divisible by 9, so a(1) does not exist, and a(2) = 15 is the only semiprime k such that k, k - s and k + s are all semiprimes.

Examples

			a(4) = 204 because 204 has digit sum 6, 204 - 6 = 198 = 2 * 3^2 * 11, 204 = 2^2 * 3 * 17 and 204 + 6 = 210 = 2 * 3 * 5 * 7 all have 4 prime divisors, counted with multiplicity, and 204 is the least number that works.
		

Programs

  • Maple
    f:= proc(n) uses priqueue; local pq, t,x,s,p,i;
          initialize(pq);
          insert([-2^n, 2$n], pq);
          do
            t:= extract(pq);
            x:= -t[1];
            s:= convert(convert(x,base,10),`+`);
            if numtheory:-bigomega(x-s) = n and numtheory:-bigomega(x+s) = n then return x fi;
            p:= nextprime(t[-1]);
            for i from n+1 to 2 by -1 while t[i] = t[-1] do
              insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]), p$(n+2-i)], pq)
            od;
          od;
    end proc:
    map(f, [$2..14]);
  • PARI
    generate(A, B, n, k) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p, ceil(A/m)), B\m, my(s=sumdigits(m*q)); if(bigomega(m*q+s) == k && bigomega(m*q-s) == k, listput(list, m*q))), forprime(q=p, sqrtnint(B\m, n), list=concat(list, f(m*q, q, n-1)))); list); vecsort(Vec(f(1, 2, n)));
    a(n) = my(x=2^n, y=2*x); while(1, my(v=generate(x, y, n, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, May 24 2025

Formula

A001222(a(n)) = A001222(A062028(a(n))) = A001222(A066568(a(n))) = n.

Extensions

a(15) from Michael S. Branicky, May 08 2025
a(16)-a(17) from Daniel Suteu, May 24 2025

A383469 Semiprimes k such that A001358(k) + k and A001358(k) - k are also semiprimes.

Original entry on oeis.org

4, 6, 46, 55, 87, 93, 94, 206, 298, 326, 362, 382, 394, 542, 562, 629, 758, 841, 866, 926, 993, 1046, 1079, 1147, 1167, 1234, 1317, 1469, 1477, 1561, 1774, 1895, 2047, 2227, 2245, 2515, 2638, 2705, 2894, 2902, 3007, 3031, 3063, 3202, 3269, 3409, 3453, 3466, 3487, 3809, 3891, 4058, 4174, 4207
Offset: 1

Author

Zak Seidov and Robert Israel, Apr 27 2025

Keywords

Examples

			a(3) = 46 is a term because 46 = 2 * 23 is a semiprime, A001358(46) = 141, and 141 - 46 = 95 = 5 * 19 and 141 + 46 = 187 = 11 * 17 are semiprimes.
		

Crossrefs

Programs

  • Maple
    k:= 0: K:= NULL: count:= 0:
    for s from 1 while count < 100 do
      if numtheory:-bigomega(s) = 2 then
        k:= k+1;
        if andmap(t -> numtheory:-bigomega(t) = 2, [k, s-k, s+k]) then
          K:= K, k; count:= count+1;
        fi
      fi;
    od:
    K;

Formula

A001358(a(k)) = A383468(k).

A383468 Semiprimes s = A001358(k) such that k, s - k and s + k are also semiprimes.

Original entry on oeis.org

10, 15, 141, 166, 274, 298, 299, 687, 995, 1115, 1227, 1299, 1345, 1891, 1945, 2194, 2661, 2998, 3093, 3287, 3566, 3781, 3902, 4174, 4262, 4497, 4798, 5378, 5414, 5758, 6609, 7094, 7666, 8354, 8434, 9566, 10041, 10342, 11051, 11091, 11486, 11582, 11702, 12279, 12574, 13154, 13346, 13387, 13466
Offset: 1

Author

Zak Seidov and Robert Israel, Apr 27 2025

Keywords

Comments

Except for a(1) = 10 = A001358(4), s and k always have different parities.

Examples

			a(3) = 141 is a term because 141 = 3 * 47 = A001358(46) is a semiprime and 46 = 2 * 23, 141 - 46 = 95 = 5 * 19 and 141 + 46 = 187 = 11 * 17 are all semiprimes.
		

Crossrefs

Programs

  • Maple
    k:= 0: R:= NULL: count:= 0:
    for s from 1 while count < 100 do
      if numtheory:-bigomega(s) = 2 then
        k:= k+1;
        if andmap(t -> numtheory:-bigomega(t) = 2, [k, s-k, s+k]) then
          R:= R, s; count:= count+1;
        fi
      fi;
    od:
    R;

Formula

a(n) = A001358(A383469(n)).

A382982 Primes of the form Sum_{i=j..k} prime(i)^prime(i).

Original entry on oeis.org

31, 826699, 303160419086407
Offset: 1

Author

Zak Seidov and Robert Israel, Apr 11 2025

Keywords

Comments

Primes that are sums of some number of consecutive terms of A051674.

Examples

			a(1) = 31 = 2^2 + 3^3 = Sum_{i=1..2} prime(i)^prime(i).
a(2) = 826699 = Sum_{i=1..4} prime(i)^prime(i).
a(3) = 303160419086407 = Sum_{i=4..6} prime(i)^prime(i).
a(4) = Sum_{i=1..24} prime(i)^prime(i) has 174 digits.
a(5) = Sum_{i=20..34} prime(i)^prime(i) has 298 digits.
a(6) = Sum_{i=30..38} prime(i)^prime(i) has 361 digits.
a(7) = Sum_{i=38..48} prime(i)^prime(i) has 524 digits.
a(8) = Sum_{i=46..84} prime(i)^prime(i) has 1142 digits.
a(9) = Sum_{i= 7..85} prime(i)^prime(i) has 1161 digits.
		

Crossrefs

Programs

  • Maple
    select(isprime, [seq(seq(add(ithprime(i)^ithprime(i),i=j..k),j=1..k-1),k=1..76)]);

A382933 Numbers k such that k, 2*m +- 3 and 3*m +- 2 are all semiprimes.

Original entry on oeis.org

451, 707, 871, 1313, 1537, 1819, 1921, 1969, 2155, 2195, 2533, 2599, 2885, 2993, 3265, 3817, 3883, 3953, 3997, 4069, 4105, 4385, 4555, 4607, 5599, 5755, 5771, 6155, 6415, 6773, 7157, 7453, 7979, 8185, 8213, 8251, 8321, 8333, 8399, 8531, 9055, 9077, 9167, 9335, 9647, 9953, 9977, 10121, 10537
Offset: 1

Author

Zak Seidov and Robert Israel, Apr 15 2025

Keywords

Comments

All terms are odd.
The first term that is a square is a(241) = 49729 = 223^2.

Examples

			a(3) = 871 because 871 = 13 * 67,
2 * 871 - 3 = 1739 = 37 * 47,
2 * 871 + 3 = 1745 = 5 * 349,
3 * 871 - 2 = 2611 = 7 * 373, and
3 * 871 + 2 = 2615 = 5 * 523 are all semiprimes.
		

Crossrefs

Cf. A001358.

Programs

  • Maple
    filter:= m -> andmap(t -> numtheory:-bigomega(t)=2, [m,2*m-3,2*m+3,3*m-2,3*m+2]):
    select(filter, [seq(i,i=1..20000,2)]);
  • Mathematica
    s = {}; Do [ If [ {2, 2, 2, 2, 2} == PrimeOmega [{m, 2*m - 3, 2*m
    + 3, 3*m - 2, 3*m + 2}], AppendTo [s, m]], {m, 5, 10^4, 2}]; s

A382765 Primes that can be expressed using exactly one of each of the prime digits 2, 3, 5, 7, using concatenation and the arithmetic operations +,-,*,/,^.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 103, 107, 113, 139, 149, 151, 163, 167, 173, 181, 197, 211, 223, 227, 229, 257, 263, 311, 353, 359, 367, 373, 379, 389, 479, 569, 571, 643, 691, 727, 733, 751, 877, 1019, 1091, 1699, 2239, 2357, 2749, 2753
Offset: 1

Author

Zak Seidov and Robert Israel, Apr 10 2025

Keywords

Comments

Concatenation is only allowed for individual digits, not expressions, so 37 - 2^5 = 5 is allowed but (7 + 2 - 5)3 = 43 is not allowed.

Examples

			a(1) = 2 = (3 - 2) * (7 - 5).
a(2) = 3 = 2 + 3 + 5 - 7.
a(3) = 5 = 37 - 2^5.
a(4) = 7 = 2 + 3 - 5 + 7.
a(83) = 4747561509941 = 7 ^ (3 * 5) - 2.
		

Crossrefs

Cf. A382901.

Programs

  • Maple
    See link.

A382901 Semiprimes that can be expressed using at most one of each of the semiprime digits 4, 6, 9 using concatenation and the arithmetic operations +, -, *, /, ^.

Original entry on oeis.org

4, 6, 9, 10, 15, 33, 46, 49, 55, 58, 65, 69, 94, 469, 649, 694, 4087, 4105
Offset: 1

Author

Zak Seidov and Robert Israel, Apr 08 2025

Keywords

Comments

Concatenation is not allowed with expressions, only digits, e.g. (9-6)4 = 34 is not allowed.

Examples

			46, 49, 69, 94, 469, 649 and 694 are concatenations.
10 = 4 + 6.
15 = 6 + 9.
33 = 4 * 6 + 9.
55 = 46 + 9.
58 = 6 * 9 + 4.
65 = 69 - 4.
4087 = 4^6 - 9.
4105 = 4^6 + 9.
		

Programs

  • Maple
    A2:= select(t -> numtheory:-bigomega(t)=2, map(t -> (t[1]+t[2],10*t[1]+t[2]),convert(combinat:-permute([4,6,9],2),set))):
    A3:= select(t -> t::integer and numtheory:-bigomega(t) = 2, map(t -> (t[1]+t[2]+t[3],t[1]+t[2]-t[3],t[1]*t[2]+t[3],t[1]*t[2]-t[3],100*t[1]+10*t[2]+t[3],10*t[1]+t[2]-t[3],10*t[1]+t[2]+t[3],t[1]^t[2]+t[3],t[1]^t[2]-t[3],
    (10*t[1]+t[2])/t[3]), convert(combinat:-permute([4,6,9]),set))):
    sort(convert({4,6,9,op(A2),op(A3)},list));

A382264 Semiprimes that are the sum of the m-th prime and the m-th semiprime for some m.

Original entry on oeis.org

6, 9, 14, 25, 38, 55, 86, 122, 141, 158, 178, 185, 218, 262, 301, 326, 446, 466, 537, 634, 695, 723, 758, 785, 866, 878, 886, 895, 898, 921, 993, 1006, 1041, 1047, 1077, 1099, 1126, 1138, 1154, 1198, 1214, 1219, 1234, 1262, 1366, 1466, 1535, 1679, 1706, 1751, 1774, 1779, 1822, 1977, 2026, 2173
Offset: 1

Author

Zak Seidov and Robert Israel, Mar 19 2025

Keywords

Comments

Semiprimes in A133796.
Corresponding m's are A092021.

Examples

			a(4) = 25 is a term, because 25 = 5^2 is a semiprime and 25 = 11 + 14 where 11 is the 5th prime and 14 is the 5th semiprime.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # for terms where the m-th prime and m-th semiprime are <= N
    P:= select(isprime, [2, seq(i, i=3..N, 2)]): nP:= nops(P):
    S:= NULL:
    for i from 1 to nP while P[i]^2 <= N do
      jmax:= ListTools:-BinaryPlace(P, N/P[i]);
      S:= S, op(P[i..jmax] *~ P[i]);
    od:
    S:= sort([S]):
    m:= min(nP, nops(S)):
    select(t -> numtheory:-bigomega(t)=2, P[1..m] + S[1..m]);

Formula

a(n) = A133796(A092021(n)).