cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A198385 Second of a triple of squares in arithmetic progression.

Original entry on oeis.org

25, 100, 169, 225, 289, 400, 625, 676, 625, 841, 900, 1156, 1369, 1225, 1681, 1521, 1600, 2500, 2025, 2704, 2601, 2500, 3721, 2809, 3025, 4225, 3364, 3600, 4225, 4225, 4225, 4624, 5625, 5476, 7225, 4900, 6724, 6084, 5329, 5625, 6400, 7225, 7225, 7225, 7921
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 24 2011

Keywords

Programs

  • Haskell
    a198385 n = a198385_list !! (n-1)
    a198385_list = map (^ 2) a198389_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    Flatten[DeleteCases[triples /@ Range[wmax], {}], 2][[All, 2]] (* Jean-François Alcover, Oct 19 2021 *)

Formula

a(n) = A198389(n)^2.
a(n) - A198384(n) = A198386(n) - a(n) = A198387(n).
A198436(n) = a(A198409(n)).

A198384 First of a triple of squares in arithmetic progression.

Original entry on oeis.org

1, 4, 49, 9, 49, 16, 289, 196, 25, 1, 36, 196, 529, 49, 961, 441, 64, 1156, 81, 784, 441, 100, 2401, 289, 121, 2209, 4, 144, 1225, 529, 169, 784, 2601, 2116, 5041, 196, 3844, 1764, 49, 225, 256, 1681, 1225, 289, 1681, 2401, 6241, 9, 4624, 324, 9409, 361
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 24 2011

Keywords

Programs

  • Haskell
    a198384 n = a198384_list !! (n-1)
    a198384_list = map (^ 2) a198388_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    Flatten[DeleteCases[triples /@ Range[wmax], {}], 2][[All, 1]] (* Jean-François Alcover, Oct 19 2021 *)

Formula

a(n) = A198388(n)^2.
A198385(n) - a(n) = A198386(n) - A198385(n) = A198387(n).
A198435(n) = a(A198409(n)).

Extensions

Thanks to Benoit Jubin, who had the idea for sequences A198384 .. A198390 and A198435 .. A198441.

A198386 Third of a triple of squares in arithmetic progression.

Original entry on oeis.org

49, 196, 289, 441, 529, 784, 961, 1156, 1225, 1681, 1764, 2116, 2209, 2401, 2401, 2601, 3136, 3844, 3969, 4624, 4761, 4900, 5041, 5329, 5929, 6241, 6724, 7056, 7225, 7921, 8281, 8464, 8649, 8836, 9409, 9604, 9604, 10404, 10609, 11025, 12544, 12769, 13225
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 24 2011

Keywords

Programs

  • Haskell
    a198386 n = a198386_list !! (n-1)
    a198386_list = map (^ 2) a198390_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]] ][[2]];
    Flatten[DeleteCases[triples /@ Range[wmax], {}], 2][[All, 3]] (* Jean-François Alcover, Oct 19 2021 *)

Formula

a(n) = A198390(n)^2.
a(n) - A198385(n) = A198385(n) - A198384(n) = A198387(n).
A198437(n) = a(A198409(n)).

A198441 Square root of third term of a triple of squares in arithmetic progression that is not a multiple of another triple in (A198384, A198385, A198386).

Original entry on oeis.org

7, 17, 23, 31, 41, 47, 49, 71, 73, 79, 89, 97, 103, 113, 119, 119, 127, 137, 151, 161, 161, 167, 191, 193, 199, 217, 217, 223, 233, 239, 241, 257, 263, 271, 281, 287, 287, 289, 311, 313, 329, 329, 337, 343, 353, 359, 367, 383, 391, 391, 401, 409, 431, 433
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Comments

This sequence gives the sum of the two legs (catheti) x + y of primitive Pythagorean triangles (x,y,z) with y even and gcd(x,y) = 1, ordered nondecreasingly (with multiple entries). See A058529(n), n>=2, for the sequence without multiple entries. For the proof, put in the Zumkeller link w = x + y, v = z and u = abs(x - y). This works because w^2 - v^2 = v^2 - u^2, hence u^2 = 2*v^2 - w^2 = 2*z^2 - (x+y)^2 = 2*(x^2 + y^2) - (x+y)^2 = x^2 + y^2 - 2*x*y = (x-y)^2. The primitivity of the arithmetic progression triples follows from the one of the Pythagorean triples: gcd(u,w) = 1 follows from gcd(x,y) = 1, then gcd(u,v,w) = gcd(gcd(u,w),v) = 1. The converse can also be proved: given a primitive arithmetic progression triple (u,v,w), 1 <= u < v < w, gcd(u,v,w) = 1, the corresponding primitive Pythagorean triple with even y is ((w-u)/2,(w+u)/2,v) or ((w+u)/2,(w-u)/2,v), depending on whether (w+u)/2 is even or odd, respectively. - Wolfdieter Lang, May 22 2013
n appears A330174(n) times. - Ray Chandler, Feb 26 2020

Examples

			Primitive Pythagorean triangle connection: a(1) = 7 because (u,v,w) = (1,5,7) corresponds to the primitive Pythagorean triangle (x = (w-u)/2, y = (w+u)/2, z = v) = (3,4,5) with leg sum 3 + 4 = 7. - _Wolfdieter Lang_, May 23 2013
		

Crossrefs

Cf. A225949 (triangle version of leg sums).

Programs

  • Haskell
    a198441 n = a198441_list !! (n-1)
    a198441_list = map a198390 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    DeleteCases[tt, t_List /; GCD@@t > 1 && MemberQ[tt, t/GCD@@t]][[All, 3]] (* Jean-François Alcover, Oct 22 2021 *)

Formula

A198437(n) = a(n)^2; a(n) = A198390(A198409(n)).

A198387 Common differences in triples of squares in arithmetic progression.

Original entry on oeis.org

24, 96, 120, 216, 240, 384, 336, 480, 600, 840, 864, 960, 840, 1176, 720, 1080, 1536, 1344, 1944, 1920, 2160, 2400, 1320, 2520, 2904, 2016, 3360, 3456, 3000, 3696, 4056, 3840, 3024, 3360, 2184, 4704, 2880, 4320, 5280, 5400, 6144, 5544, 6000, 6936, 6240, 5880
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 24 2011

Keywords

Programs

  • Haskell
    a198387 n = a198387_list !! (n-1)
    a198387_list = zipWith (-) a198385_list a198384_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    #[[2]] - #[[1]]& /@ Flatten[DeleteCases[triples /@ Range[wmax], {}] , 2] (* Jean-François Alcover, Oct 21 2021 *)

Formula

a(n) = A198385(n) - A198384(n) = A198386(n) - A198385(n).
A198438(n) = a(A198409(n)).

A198435 First term of a triple of squares in arithmetic progression, which is not a multiple of another triple in (A198384,A198385,A198386).

Original entry on oeis.org

1, 49, 49, 289, 1, 529, 961, 2401, 289, 2209, 529, 5041, 49, 1681, 1681, 6241, 9409, 49, 961, 5329, 16129, 14161, 7921, 289, 25921, 2209, 12769, 27889, 14161, 1, 39601, 2401, 5329, 10609, 25921, 49729, 58081, 529, 961, 10609, 7921, 36481, 82369, 22801, 47089
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Crossrefs

Programs

  • Haskell
    a198435 n = a198435_list !! (n-1)
    a198435_list = map a198384 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    DeleteCases[tt, t_List /; GCD @@ t>1 && MemberQ[tt, t/GCD @@ t]][[All, 1]] (* Jean-François Alcover, Oct 20 2021 *)

Formula

a(n) = A198439(n)^2 = A198384(A198409(n));
A198436(n) - a(n) = A198437(n) - A198436(n) = A198438(n).

A198390 Square root of third term of a triple of squares in arithmetic progression.

Original entry on oeis.org

7, 14, 17, 21, 23, 28, 31, 34, 35, 41, 42, 46, 47, 49, 49, 51, 56, 62, 63, 68, 69, 70, 71, 73, 77, 79, 82, 84, 85, 89, 91, 92, 93, 94, 97, 98, 98, 102, 103, 105, 112, 113, 115, 119, 119, 119, 119, 123, 124, 126, 127, 133, 136, 137, 138, 140, 141, 142, 146
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 24 2011

Keywords

Comments

There is a connection to the leg sums of Pythagorean triangles.
See a comment on the primitive case under A198439, which applies mutatis mutandis. - Wolfdieter Lang, May 23 2013
Are these just the positive multiples of A001132? - Charles R Greathouse IV, May 28 2013
n appears A331671(n) times. - Ray Chandler, Feb 26 2020

Examples

			Connection to leg sums of Pythagorean triangles: a(2) = 14 because (in the notation of the Zumkeller link) (u,v,w)= (2,10,14) = 2*(1,5,7), and this corresponds to the non-primitive Pythagorean triangle 2*(x=(7-1)/1,y=(1+7)/2,z=5) = 2*(3,4,5) with leg sum 2*(3+4) = 14. - _Wolfdieter Lang_, May 23 2013
		

Crossrefs

Programs

  • Haskell
    a198390 n = a198390_list !! (n-1)
    a198390_list = map (\(,,x) -> x) ts where
       ts = [(u,v,w) | w <- [1..], v <- [1..w-1], u <- [1..v-1],
                       w^2 - v^2 == v^2 - u^2]
    
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
    Flatten[DeleteCases[triples /@ Range[wmax], {}], 2][[All, 3]] (* Jean-François Alcover, Oct 20 2021 *)
  • PARI
    is(n)=my(t=n^2);forstep(i=2-n%2,n-2,2, if(issquare((t+i^2)/2), return(1))); 0 \\ Charles R Greathouse IV, May 28 2013

Formula

A198386(n) = a(n)^2.
A198441(n) = a(A198409(n)).

A198436 Second term of a triple of squares in arithmetic progression, which is not a multiple of another triple in (A198384, A198385, A198386).

Original entry on oeis.org

25, 169, 289, 625, 841, 1369, 1681, 3721, 2809, 4225, 4225, 7225, 5329, 7225, 7921, 10201, 12769, 9409, 11881, 15625, 21025, 21025, 22201, 18769, 32761, 24649, 29929, 38809, 34225, 28561, 48841, 34225, 37249, 42025, 52441, 66049, 70225, 42025, 48841, 54289
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Crossrefs

Programs

  • Haskell
    a198436 n = a198436_list !! (n-1)
    a198436_list = map a198385 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    DeleteCases[tt, t_List /; GCD @@ t>1 && MemberQ[tt, t/GCD @@ t]][[All, 2]] (* Jean-François Alcover, Oct 20 2021 *)

Formula

a(n) = A198440(n)^2 = A198385(A198409(n)).
a(n) - A198435(n) = A198437(n) - a(n) = A198438(n).

A198437 Third term of a triple of squares in arithmetic progression, which is not a multiple of another triple in (A198384,A198385,A198386).

Original entry on oeis.org

49, 289, 529, 961, 1681, 2209, 2401, 5041, 5329, 6241, 7921, 9409, 10609, 12769, 14161, 14161, 16129, 18769, 22801, 25921, 25921, 27889, 36481, 37249, 39601, 47089, 47089, 49729, 54289, 57121, 58081, 66049, 69169, 73441, 78961, 82369, 82369, 83521, 96721
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Crossrefs

Programs

  • Haskell
    a198437 n = a198437_list !! (n-1)
    a198437_list = map a198386 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    DeleteCases[tt, t_List /; GCD @@ t>1 && MemberQ[tt, t/GCD @@ t]][[All, 3]] (* Jean-François Alcover, Oct 20 2021 *)

Formula

a(n) = A198441(n)^2 = A198386(A198409(n));
a(n) - A198436(n) = A198436(n) - A198435(n) = A198438(n).

A198438 Common differences in triples of squares in arithmetic progression, that are not a multiples of other triples in (A198384, A198385, A198386).

Original entry on oeis.org

24, 120, 240, 336, 840, 840, 720, 1320, 2520, 2016, 3696, 2184, 5280, 5544, 6240, 3960, 3360, 9360, 10920, 10296, 4896, 6864, 14280, 18480, 6840, 22440, 17160, 10920, 20064, 28560, 9240, 31824, 31920, 31416, 26520, 16320, 12144, 41496, 47880, 43680, 50160
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2011

Keywords

Programs

  • Haskell
    a198438 n = a198438_list !! (n-1)
    a198438_list = map a198387 a198409_list
  • Mathematica
    wmax = 1000;
    triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];
    tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];
    #[[2]] - #[[1]]& /@ DeleteCases[tt, t_List /; GCD@@t > 1 && MemberQ[tt, t/GCD@@t]] (* Jean-François Alcover, Oct 22 2021 *)

Formula

a(n) = A198387(A198409(n)) = A198436(n) - A198435(n) = A198437(n) - A198436(n).
Showing 1-10 of 14 results. Next